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Probability models for low wind speeds zones
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This paper focuses on the comparison of some probability distributions for low wind speeds
regimes using some goodness-of-fit criteria. Results obtained from the analysis indicated that
while the 2-parameter Weibull distribution reported the best fit in terms of its highest p-value of
the Kolmogorov-Smirnov (K-S) statistic, the Akaike information criterion (AIC) reported the
4-parameter transformed beta distribution as the best model for the wind speed observations.
Further, the 1-parameter Maxwell distribution presented the best Q-Q plot of all the fitted distri-
butions. The results from the study also suggest that several other probability distributions can be
used as efficient alternative to the conventional Weibull distribution in fitting wind speeds data
from low wind speeds zones.
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1. Introduction

Over the years, there has risen a widespread interest in the statistical analysis of meteoro-
logical variables. Statistical analysis of meteorological variables includes the day-to-day or
month-to-month or even the annual study of variations and frequencies of these variables
in any location. These studies involve the systematic observation, recording and analysis
of rainfall, temperature, cloud cover, relative humidity, sunshine, flood frequencies, earth-
quakes and wind regimes across locations. Central to meteorological studies in recent times
is the study of wind distributions across locations. These studies have been carried out
with an aim to create a predictive base for wind pattern and distributions which grossly
affect many activities of men like air travels, sea travels, satellite technology and radio
communications etc. On a more practical end, these studies have helped to reinforce the
drive to harness the wind as an optimal energy alternative to most non-renewable energy
means widely relied on by most countries. Renewable energy sources such as the wind, as
an alternative to fossil fuels, is infinitely available, renewable, widely distributed, clean and
presents no harmful emissions to the environment(Slootweg et al., 2001). In Nigeria today,
despite the availability of abundance of energy sources, the country is still in short supply
of electrical power. Of her population spanning over 180 million people, less than 50% have
access to grid electricity. The hydro power and fossil fuels which the country majorly rely
on as sources of energy are grossly affected by seasonal variations in volume of water and
the activities of militants in the Niger Delta respectively, as well as a host of other factors
which by implication has impaired the power output of the nation. The electricity supply
to the consumers that are connected to the hydro-driven grid is erratic and epileptic and
hence, consumers satisfaction is on low ebb. This has spurred the need to harness other
alternative form of energy and in particular renewable energy for power generation. The
heightened concerns about global warming and the continued apprehensions about nuclear
power around the world had also been a driving factor stimulating the drive for renewable
energy alternatives.

Wind is a natural phenomenon related to the movement of air masses influenced primarily
by the differential solar heating of the earth (Sambo, 2005). Wind is caused by differences in
the atmospheric pressure. When there exists a difference in atmospheric pressure, air moves
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from the higher to the lower pressure area, resulting in winds of diverse speeds. Wind is a
classic example of a stochastic variable. Due to its stochastic nature, wind energy cannot be
controlled but can be managed (Agbetuyi et al., 2012). The need to manage wind resources
stems from the fact that wind power is available only when the wind speed is above certain
threshold or baseline (Brady, 2009). Even though wind power is very consistent from year
to year, it is also subject to significant variations over shorter time scales; hourly, daily or
seasonally (Odo et al., 2012). Bearing in mind that instantaneous electrical generation and
consumption must remain in balance to maintain grid stability, this variability can lead to
substantial challenges to incorporating large amounts of wind power into a grid system.
Statistical analysis is thus required to be able to study the pattern of wind flow in order to
guarantee optimal wind energy power generation. More so, the extent to which wind can be
exploited as a source of energy depends on the probability density of occurrence of different
wind speeds at any generating site. To optimize the design of a wind energy conversion
device, data on wind speed range over which the device must operate to maximize energy
extraction is required. This in turn requires the knowledge of the frequency distribution of
the wind speed. Thus for a wind energy conversion device like the wind turbine, explicit
knowledge of the distribution of the wind speed is highly required to enhance output and
stability of system as well as for proper wind system design. Several probability distributions
have been used in the literature in carrying out wind speed frequency analysis in many
studies. The 2-parameter Weibull distribution has been used extensively (Wentink, 1976;
Petersen, 1981; Ulgen and Hepbasli, 2002; Celik, 2004; Zaharim et al., 2009; Sarkar and
Kasperki, 2009; Gupta and Biswa, 2010; Odo et al., 2012; Osatohanmwen et al., 2016) and
it has been found to fit a wide collection of wind regimes. Even though the 2-parameter
Weibull distribution has been employed extensively more or less as the conventional wind
speed model, it has also been found to be inadequate in fitting some wind speed data
(Jaramillo and Borja, 2004; Masseran et al., 2013; Datta and Datta, 2013) and inadequate
in fitting the upper tail of most wind speed distributions (Perrin et al., 2006; Sarkar,
2011). Other probability distributions often employed in wind speed studies include the
Rayleigh, Burr XII, gamma, inverse gamma, Gaussian, inverse Gaussian, exponential, log-
normal, Erlang, exponentiated Weibull, 3-parameter beta, log-logistics, Pearson V, Pearson
VI and uniform distributions (Yilmaz and Celik, 2008; Safari, 2011; Masseran et al., 2013;
Datta and Datta, 2013). The main aim of all these studies has been to obtain the most
appropriate theoretical wind speed distribution of a particular location in other to induce
practical decision making and optimal wind energy generation. In this paper, a comparison
of several probability distributions used in fitting wind speed data is considered using some
goodness-of-fit criteria .

The paper is organized in seven sections. Method employed in the paper is presented in
Section 2, a note on the data used for the study is contained in Section 3, and Section
4 contains a discussion on the various probability distributions used for the comparison.
Analysis of data is undertaken in Section 5 with discussion of results and conclusion in
Sections 6 and 7 respectively.

2. Method

Here we present some statistical tools cogent to the analysis that will be undertaken in this
paper. We start by looking at the probability density and cumulative distribution functions.
The Maximum likelihood method of parameter estimation for parametric distributions and
some goodness-of-fit measures are also considered.

2.1 Probability density function and cumulative distribution function

Associated with any continuous random variable X is a probability distribution. A contin-
uous probability distribution is usually defined by a probability density function (PDF) f
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and a cumulative distribution function (CDF) F . The PDF f is a function of the values
assumed by the random variable X denoted x and a vector of parameter(s) Θ which charac-
terizes the distribution. The PDF gives the probability that the random variable X assumes
any real value x on its support. Integrating the PDF gives the CDF of a distribution. The
CDF gives the cumulative probability that the random variable X assume values less than
and equal to x. In this paper, wind speed is taken to be a continuous random variable X
with a PDF f (x; Θ) and CDF F (x; Θ).The CDF is related to the PDF by the expression

F (x; Θ) =

∫ x

−∞
f (t; Θ) dt. (2.1)

2.2 Maximum likelihood estimation of wind speed distribution parameters

Estimating the parameter(s) of a given wind speed distribution is an essential task to be
undertaken when carrying out wind speed studies. The maximum likelihood estimation
approach is widely used in many fields of study due to some of its robust properties that
include efficiency and consistency. For a random independent wind speed sample x1, x2, , xn
from a given probability distribution, the approach involves the maximization of the log-
likelihood function

L =

n∑
i=1

log (f (xi; Θ)) . (2.2)

When carrying out the maximization of (2.2), the solution of some of the resulting systems
of equations may not be analytically tractable. To circumvent this, iterative numerical
procedures are used to obtain the estimates of the parameters of specific distributions.
Some of these iterative schemes are well implemented in some statistical software packages
like the R programming language(R Development Core Team, 2009). In this paper, the
maximum likelihood estimation technique will be employed in fitting wind speed data to
specific distributions.

2.3 Goodness-of-fit measures

Goodness-of-fit measures are statistics or graphics used to determine whether observed
samples of a random variable fits into a specific theoretical distribution. They are also used
to measure the relative performance of a particular theoretical distribution in fitting a given
data set when compared with some other family of theoretical distribution(s). In this paper,
the goodness-of-fit measures we shall involve for our analysis are the Akaike information
criterion (AIC) (Akaike, 1974), the p-value of the Kolmogorov-Smirnov (K-S) statistic and
the Q-Q plot.

(a) Akaike information criterion (AIC). The AIC is a model identification and
performance measure which depends on the log-likelihood function of a distribution.
The AIC value is calculated using the relation

AIC
(

Θ̂
)

= 2k − 2L, (2.3)

where Θ̂ is the maximum likelihood estimate of the parameter vector Θ, k is the
number of parameters of the distribution in question, and L is the value of the
log-likelihood. Among several competing families of distributions, the one with the
smallest AIC value is considered the best model for the data set.
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(b) Kolmogorov-Smirnov (K-S) statistic. The Kolmogorov-Smirnov (K-S) statistic
is one of the most powerful non-parametric test statistics in the statistical litera-
ture. The statistic is obtained by making use of ranks of wind speed observations
rather than the actual observed values. The K-S test statistic is used to compare
a theoretical cumulative distribution function F (x; Θ) of a continuous random

variable X to an empirical cumulative distribution function (ECDF) F̂n (x; Θ) of a
random sample of size n. The ECDF is based on the order statistics

X(1) ≤ X(2) ≤ ... ≤ X(n)

with X(i) denoting the ith order statistic. The ECDF F̂n (x; Θ) is defined as the
number of data points less than or equal x divided by the sample size n. It can be
expressed in terms of the order statistics as

F̂n (x; Θ) =

{ 0; x ≤ X(1)
j

n
; X(j) ≤ x < Xj+1

1; x ≥ X(n).

(2.4)

The K-S statistic is given as

D = max
[
F̂n (x; Θ)− F (x; Θ)

]
. (2.5)

When using the K-S statistic, two hypotheses are constructed; the null hypothesis
(H0) and an alternative hypothesis (H1) for a given α− level of significance. Under

H0, F (x; Θ) = F̂n (x; Θ) while H1 specifies that F (x; Θ) 6= F̂n (x; Θ). The distri-
bution of the observed sample is taken to be the same as that of the theoretical
distribution F (x; Θ) (i.e. H0 is true) if

D < Dα, (2.6)

where Dα is the tabulated K-S critical value read off from the K-S test statistic
table for a defined α− level of significance.

Associated with the K-S statistic is a quantity called the p-value which is some-
times referred to as the observed level of significance. The p-value is defined as the
probability of observing a value of the test statistic D as extreme as or more extreme
than the one that is observed, when H0 is true. A p-value less than or equal to the
given α− level of significance will lead to the rejection of H0.

(c) Q-Q plot. The Q-Q plot is a graphical measure of goodness-of-fit of a given theo-
retical probability distribution used in fitting a data set. The Q-Q plot graphically
compares the empirical quantiles (based on order statistics of the observed sample)
of a given data set to that of the theoretical quantiles of the distribution used in
fitting the data. The empirical quantiles appears on a 450 line on the graph while
the theoretical quantiles are scattered along this line. The theoretical distribution
quantiles that lies closest to the line is taken to fit the data best among competing
distributions.

17



Journal of the Nigerian Statistical Association, Vol. 29, 2017 Osatohanmwen et al.

3. Wind data

The analysis in this paper is based on 3 years (2012 – 2014) daily mean wind speed record-
ings obtained from the recording station of the National Center for Energy and Environment
(NCEE) Benin City, Edo State, South-South Nigeria. The wind speed observations were
obtained at a height of 10 meters with 988 sample observations available out of a possible
1096 sample observations. The missing observations were unavoidably due to shut down and
repair/replacement of recording systems. Since the missing observations are less than 10%
of the possible wind speed observations, results to be obtained using the available sample
will still be highly valid. The highest and lowest wind speed observations are 7.18m/s and
0.1m/s respectively which indicates that the city lies on the low wind speed zone in the
country. A look at the wind speed trend in Figure 1 clearly shows that there has been a de-
crease in the mean daily wind speeds measurement over the period covered. This is largely
due to the increased construction of structures which are highly concentrated around the
measuring site. Wind speed as we know it, tends to be higher over freer landscape than
congested environments. Other environmental factors may have also contributed to the
downward moving trend over the years. The wind speed data is available upon request
from the corresponding author.

4. Theorectical wind speed distributions

In this section, a discussion on some theoretical wind speed probability distributions is
presented. Our discussion shall cover some commonly used wind speed distributions like
the Weibull, Rayleigh, lognormal and gamma distributions as well as some not-too-popular
wind speed distributions like the transformed beta, paralogistic, transformed gamma and
inverse paralogistic distributions.

4.1 Normal distribution (N-2)

The normal distribution is the most important probability distribution in statistics. It is a
2-parameter distribution with PDF and CDF given respectively as

f (x;µ, σ) =
1√

2πσ2
e−z

2/2, (4.1)

F (x;µ, σ) =
1

2
± 1

2
γ

(
1

2
,
z2

2

)
/
√
π, (4.2)

z = (x− µ) /σ,−∞ < x <∞,−∞ < µ <∞, σ > 0, π = 3.141593,

where γ (., .) is the lower incomplete gamma function. The positive sign in (8) is valid for
z ≥ 0 and the negative sign for z < 0. The parameters µ and σ are the mean (location
parameter) and standard deviation (scale parameter) of the wind speed random variable X
respectively (Walck, 2007). The maximum likelihood estimators of the parameters µ and σ
are given respectively as

µ̂ =
1

n

n∑
i=1

xi, (4.3)
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σ̂ =

√√√√ 1

n

n∑
i=1

(xi − µ̂)2. (4.4)

Figure 1. Wind speed data for Benin City (2012 - 2014)

4.2 Lognormal distribution (LN-2)

The PDF and CDF of the 2-parameter lognormal (LN-2)distribution are given respectively
as

f (x;µ, σ) =
1

x
√

2πσ2
e−z

2/2, (4.5)

F (x;µ, σ) =
1

2
± 1

2
γ

(
1

2
,
z2

2

)
/
√
π, (4.6)

z = (lnx− µ) /σ, x, µ, σ > 0, π = 3.141593,

where γ (., .) is the lower incomplete gamma function. The positive sign in (12) is valid for
z ≥ 0 and the negative sign for z < 0. The parameters µ and σ are the mean and standard
deviation of the natural logarithm of the wind speed random variableX respectively (Walck,
2007). The maximum likelihood estimators of the parameters µ and σ are given respectively
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as

µ̂ =
1

n

n∑
i=1

lnxi, (4.7)

σ̂ =

√√√√ 1

n

n∑
i=1

(lnxi − µ̂)2. (4.8)

4.3 Maxwell distribution

The PDF and CDF of the 1-parameter Maxwell (M-1) distribution is given respectively as

f (x;α) =

√
2

α6π
x2e−x

2/2α2

, (4.9)

F (x;α) = 2γ

(
3

2
,
x2

2α2

)
/
√
π, (4.10)

x =≥ 0, α > 0, π = 3.141593,

where γ (., .) is the lower incomplete gamma function and α a scale parameter (Walck,
2007). The maximum likelihood estimator of the scale parameter α is given as

α̂ =

√√√√ 1

3n

n∑
i=1

x2i . (4.11)

4.4 Rayleigh distribution (R-1)

The PDF and CDF of the 1-parameter Rayleigh (R-1) distribution is given respectively as

f (x;σ) =
x

σ2
e−x

2/2σ2

, (4.12)

F (x;σ) = γ

(
1,

x2

2σ2

)
, (4.13)

x ≥ 0, σ > 0,

where γ (., .) is the lower incomplete gamma function and σ a scale parameter (Johnson
et al., 1995; Walck, 2007). The maximum likelihood estimator of the scale parameter σ is
given as

σ̂ =

√√√√ 1

2n

n∑
i=1

x2i . (4.14)
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4.5 Transformed gamma distribution (TG-3)

The transformed gamma distribution is a 3-parameter distribution with PDF and CDF
given respectively as

f (x;α, β, c) =
β (x/c)αβ e−(x/c)

β

xΓ (α)
, (4.15)

F (x;α, β, c) =
γ
(
β(α− 1) + 1, (x/c)β

)
Γ (α)

, (4.16)

x ≥ 0, α, β, c > 0,

where Γ (.) and γ (., .) are the gamma and lower incomplete gamma functions respectively.
The parameters α and β are shape parameters and c a scale parameter (Klugmann et al.,
2008). The maximum likelihood estimates of the scale parameter c and shape parameters
α and β are obtained by solving the systems of equations

n

β
+ α

n∑
i=1

lnxi − nαlnc−
n∑
i=1

(xi
c

)β
ln
(xi
c

)
= 0

−n
c
− n(αβ − 1)

c
+
β

c

n∑
i=1

(xi
c

)β
= 0

β

n∑
i=1

lnxi − nβlnc− nψ (α) = 0

for α, β and c. Where ψ (.) is the digamma function which is the same as the derivative of
the natural logarithm of γ (.).

4.6 Gamma distribution (G-2)

The 2-parameter gamma distribution is the 3-parameter transformed gamma distribution
with β = 1. Its PDF and CDF are given respectively as

f (x;α, c) =
(x/c)α e−(x/c)

xΓ (α)
, (4.17)

F (x;α, c) =
γ (α, (x/c))

Γ (α)
, (4.18)

x ≥ 0, α, c > 0,

where Γ (.) and γ (., .) are the gamma and lower incomplete gamma functions respectively.
The parameters α and c are shape and scale parameters respectively (Klugmann et al.,
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2008). The maximum likelihood estimates of the scale parameter c and shape parameter α
are obtained by solving the systems of equations

−n
c
− n(α− 1)

c
+

1

c2

n∑
i=1

xi = 0

n∑
i=1

lnxi − nlnc− nψ (α) = 0

for α and c.

4.7 Weibull distribution (W-2)

The Weibull distribution is the most widely used theoretical distribution in wind speed
studies. The 2-parameter Weibull distribution is the 3-parameter transformed gamma dis-
tribution with α = 1. Its PDF and CDF are given respectively as

f (x;β, c) =
β (x/c)β e−(x/c)

β

x
, (4.19)

F (x;β, c) = γ
(

1, (x/c)β
)
, (4.20)

x ≥ 0, β, c > 0,

where γ (., .) is the lower incomplete gamma function. The parameters β and c are shape and
scale parameters respectively (Klugmann et al., 2008). The maximum likelihood estimates
of the scale parameter c and shape parameter β are obtained by solving the systems of
equations

n

β
+

n∑
i=1

lnxi − nlnc−
n∑
i=1

(xi
c

)β
ln
(xi
c

)
= 0

−n
c
− n(β − 1)

c
+
β

c

n∑
i=1

(xi
c

)β
= 0

for β and c.

4.8 Exponential distribution (E-1)

The 1-parameter exponential distribution is the 3-parameter transformed gamma distribu-
tion with α = β = 1. Its PDF and CDF are given respectively as

f (x; c) =
1

c
e−(x/c), (4.21)
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F (x; c) = γ (1, (x/c)) , (4.22)

x ≥ 0, c > 0,

where γ (., .) is the lower incomplete gamma function and the parameter c, a scale parameter
(Klugmann et al., 2008). The maximum likelihood estimator of the scale parameter c is given
as

ĉ =
1

n

n∑
i=1

xi. (4.23)

4.9 Chi-square distribution (CS-1)

The 1-parameter chi-square distribution is a special case of the gamma distribution. Its
PDF and CDF are given respectively as

f (x; p) =
1/2

(x
2

)p
2
−1

e−(x/2)

Γ (p/2)
, (4.24)

F (x; p) =
γ (p/2, x/2)

Γ (p/2)
, (4.25)

x > 0, p ≥ 0,

where Γ (.) and γ (., .) are the gamma and lower incomplete gamma functions respectively.
The parameter p is the degree of freedom. The maximum likelihood estimates of p is ob-
tained by solving the equation

ψ (p/2) =
1

2n

n∑
i=1

ln (xi/2)

for p.

4.10 Transformed beta distribution (TB-4)

The 4-parameter transformed beta distribution is defined by its PDF and CDF given re-
spectively as

f (x; a, b, c, s) =
b/s (x/s)bc−1

[
1 + (x/s)b

]−(a+c)
B (a, c)

, (4.26)

F (x; a, b, c, s) =
Bt (a, c)

B (a, c)
, (4.27)
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t = (x/s)b , x > 0, a, b, c, s > 0,

where B (., .) and Bt (., .) are the beta and incomplete beta functions respectively, and
B (., .) = Γ(p)Γ(q)/Γ(p+ q), p and q are real numbers (Klugmann et al. 2008). The param-
eters a, b and c are shape parameters while s is a scale parameter. The maximum likelihood
estimates of a, b, c and s are obtained by solving the systems of equations

nψ (a+ c)− nψ (a)−
n∑
i=1

ln
[
1 + (xi/s)

b
]

= 0

n

b
+ c

n∑
i=1

lnxi − nclns− (a+ c)

n∑
i=1

(xi/s)
b ln (xi/s)

1 + (xi/s)
b

= 0

nψ(a+ c)− nψ(c) + b

n∑
i=1

lnxi − nblns−
n∑
i=1

ln
[
1 + (xi/s)

b
]

= 0

−nbc
s

+
b(a+ c)

sb+1

n∑
i=1

xbi

1 + (xi/s)
b

= 0

for a, b, c and s.

4.11 Burr distribution (B-3)

The 3-parameter Burr distribution also known as the Burr XII distribution (Johnson et al.,
1995) is the 4-parameter transformed beta distribution with c = 1. Its PDF and CDF are
given respectively as

f (x; a, b, s) =
b/s (x/s)b−1

[
1 + (x/s)b

]−(a+1)

B (a, 1)
, (4.28)

F (x; a, b, s) =
Bt (a, 1)

B (a, 1)
, (4.29)

t = (x/s)b , x > 0, a, b, s > 0,

where B (., .) and Bt (., .) are the beta and incomplete beta functions respectively (Klug-
mann et al., 2008). The parameters a and b are shape parameters while s is a scale param-
eter. The maximum likelihood estimates of a, b and s are obtained by solving the systems
of equations

n

a
−

n∑
i=1

ln
[
1 + (xi/s)

b
]

= 0
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n

b
+

n∑
i=1

lnxi − nlns− (a+ 1)

n∑
i=1

(xi/s)
b ln (xi/s)

1 + (xi/s)
b

= 0

−nb
s

+
b(a+ 1)

sb+1

n∑
i=1

xbi

1 + (xi/s)
b

= 0

for a, b and s.

4.12 Inverse Burr distribution (IB-3)

The 3-parameter inverse Burr distribution also known as Burr III distribution (Johnson et
al., 1995) is the 4-parameter transformed beta distribution with a = 1. Its PDF and CDF
are given respectively as

f (x; b, c, s) =
b/s (x/s)bc−1

[
1 + (x/s)b

]−(c+1)

B (1, c)
, (4.30)

F (x; b, c, s) =
Bt (1, c)

B (1, c)
, (4.31)

t = (x/s)b , x > 0, b, c, s > 0,

where B (., .) and Bt (., .) are the beta and incomplete beta functions respectively (Klug-
mann et al., 2008). The parameters b and c are shape parameters while s is a scale param-
eter. The maximum likelihood estimates of b, c and s are obtained by solving the systems
of equations

n

b
+ c

n∑
i=1

lnxi − nclns− (c+ 1)

n∑
i=1

(xi/s)
b ln (xi/s)

1 + (xi/s)
b

= 0

n

c
+ b

n∑
i=1

lnxi − nblns−
n∑
i=1

ln
[
1 + (xi/s)

b
]

= 0

−nbc
s

+
b(c+ 1)

sb+1

n∑
i=1

xbi

1 + (xi/s)
b

= 0

for b, c and s.
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4.13 Log logistic distribution (LL-2)

The 2-parameter log logistic distribution also known as Fisk distribution is the 4-parameter
transformed beta distribution with a = c = 1. Its PDF and CDF are given respectively as

f (x; b, s) = b/s (x/s)b−1
[
1 + (x/s)b

]−2
, (4.32)

F (x; b, s) = Bt (1, 1) , (4.33)

t = (x/s)b , x > 0, b, s > 0,

where Bt (., .) is the incomplete beta function (Klugmann et al., 2008). The parameter b
is a shape parameter while s is a scale parameter. The maximum likelihood estimates of b
and s are obtained by solving the systems of equations

n

b
+

n∑
i=1

lnxi − nlns− 2

n∑
i=1

(xi/s)
b ln (xi/s)

1 + (xi/s)
b

= 0

−nb
s

+
2b

sb+1

n∑
i=1

xbi

1 + (xi/s)
b

= 0

for b and s.

4.14 Paralogistic distribution (PL-2)

The 2-parameter paralogistic distribution is the 4-parameter transformed beta distribution
with b = a and c = 1. Its PDF and CDF are given respectively as

f (x; a, s) =
a2

s
(x/s)a−1 [1 + (x/s)a]−(a+1) , (4.34)

F (x; a, s) = aBt(a, 1), (4.35)

t = (x/s)a , x > 0, a, s > 0,

where Bt(., .) is the incomplete beta function (Klugmann et al., 2008). The parameter a is
a shape parameter while s is a scale parameter. The maximum likelihood estimates of a
and s are obtained by solving the systems of equations

2n

a
+

n∑
i=1

lnxi − nlns− (a+ 1)

n∑
i=1

(xi/s)
a ln (xi/s)

1 + (xi/s)
a −

n∑
i=1

ln [1 + (xi/s)
a] = 0
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−na
s

+
a(a+ 1)

sa+1

n∑
i=1

xai
1 + (xi/s)

a = 0

for a and s.

4.15 Inverse paralogistic distribution (IPL-2)

The 2-parameter inverse paralogistic distribution is the 4-parameter transformed beta dis-
tribution with a = 1 and c = b. Its PDF and CDF are given respectively as

f (x; b, s) =
b2

s
(x/s)b

2−1
[
1 + (x/s)b

]−(b+1)
, (4.36)

F (x; b, s) = bBt(1, b), (4.37)

t = (x/s)b , x > 0, b, s > 0,

where Bt(., .) is the incomplete beta function (Klugmann et al., 2008). The parameter b is
a shape parameter while s is a scale parameter. The maximum likelihood estimates of b
and s are obtained by solving the systems of equations

2n

b
+ 2b

n∑
i=1

lnxi − 2nblns− (b+ 1)

n∑
i=1

(xi/s)
b ln (xi/s)

1 + (xi/s)
b
−

n∑
i=1

ln
[
1 + (xi/s)

b
]

= 0

−nb
2

s
+
b(b+ 1)

sb+1

n∑
i=1

xbi

1 + (xi/s)
b

= 0

for b and s.

5. Data analysis

For the analysis, the theoretical wind speed distributions discussed in Section 4 were used
to fit the wind speed data. The maximum likelihood estimates of the parameter(s) of the
distributions alongside the goodness-of-fit statistics discussed in section two is presented
in Table 1. The 5% level of significance is used for the analysis. The Newton-Raphson
types Numerical optimization procedure were used in obtaining the maximum likelihood
estimates of some distribution parameters. These iterative numerical techniques were imple-
mented in the R programming software. The R programmes for the analysis can be made
available to interested readers upon request from the corresponding author. In Figure 2
(a-o), density plot of all the fitted distribution is presented. The Q-Q plots of all the theo-
retical distributions are given in Figure 3 (a-o). The purpose of the tabular and graphical
presentations is to determine among the several wind speed probability models considered
in this paper, the one(s) that is/are most adequate in carrying out wind speed analysis
for the given location. The need to also explore the performance of all the distributions
considered is also a rationale for the analysis.
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6. Discussion of results

The normal distribution, as one of the distributions used for the analysis presents a relatively
poor fit for the wind speed observations. This is because, while its K-S statistic value and p-
value is indicating a good fit at the 5% level of significance, its AIC value is relatively high.
Again, the Q-Q plot for the normal distribution clearly shows that the lower and upper
quantiles of the wind speeds are poorly estimated. The lognormal distribution reported a
lower AIC value than the normal distribution even though its K-S statistic value and p-
value indicates that the distribution is different from the distribution of the observed wind
speeds at the 5% level of significance.

Table 1: Maximum likelihood estimates of the parameters of wind speed distributions
(Standard error of estimates in parenthesis)

Distributions Parameter es-
timate(s)

AIC K-S statistic p-value

N-2 µ̂=1.2239
(0.0186)
σ̂=0.5846
(0.0186)

1746.941 0.0386 0.1056

LN-2 µ̂=0.0756
(0.0171)
σ̂=0.5381
(0.0121)

1732.703 0.0859 9.25×10−7

M-1 α̂=0.7831
(0.0424)

1663.822 0.0621 0.00097

R-1 σ̂=0.9591
(0.0153)

1663.462 0.0512 0.0114

TG-3 α̂=2.0355
(0.3710)

β̂=1.4880
(0.1527)
ĉ=0.7995
(0.1492)

1631.179 0.0397 0.0888

G-2 α̂=4.1141
(0.3710)
ĉ=0.2975
(0.0137)

1639.53 0.0548 0.0053

W-2 β̂=2.1780
(0.0498)
ĉ=1.3802
(0.0212)

1652.202 0.0297 0.3489

E-1 ĉ=1.2239
(0.0260)

2377.28 0.2533 2.2×10−16

CS-1 p̂=1.9518
(0.04487)

2579.935 0.2861 2.2×10−16
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TB-4 â=2.5240
(0.9898)

b̂=4.0263
(0.8083)
ĉ=0.5216
(0.1363)
ŝ=2.0447
(0.2122)

1610.149 0.0343 0.1958

B-3 â=6.3806
(1.7060)

b̂=2.5179
(0.0849)
ŝ=2.7513
(0.3704)

1613.713 0.0311 0.2964

IB-3 b̂=0.2813
(0.0325)
ĉ=6.7452
(0.5469)
ŝ=1.7268
(0.0495)

1614.652 0.0387 0.1033

LL-2 b̂=3.3334
(0.0881)
ŝ=1.1278
(0.0188)

1716.131 0.0606 0.0014

PL-2 â=2.7833
(0.0623)
ŝ=1.8204
(0.0282)

1625.622 0.0391 0.0963

IPL-2 b̂=2.3436
(0.0466)
ŝ=0.6896
(0.0133)

1849.468 0.1022 2.16×10−9
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Figure 2(a-o). Density plots of fitted wind speeds distributions
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Figure 5(a-o). Q-Q plots of fitted wind speed distributions

The upper quantiles of the wind speed distribution was poorly estimated by the
lognormal distribution as indicated by its Q-Q plot.

The AIC value of the Maxwell distribution is smaller than that of the normal and log-
normal distributions even though its K-S statistic value and p-value indicates that the
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Maxwell distribution is different from the distribution of the observed wind speeds at the
5% level of significance. The Q-Q plot of the Maxwell distribution is best among all the
distributions considered. The Rayleigh distribution is observed to be the best distribution
for the data among the 1-parameter distributions considered for the analysis. The Q-Q plot
for the Rayleigh distribution also attests to the adequacy of the distribution.

The transformed gamma distribution which generalizes the gamma, Weibull, exponential,
and chi-square distributions offered an adequate fit for the wind speed data. The AIC
value, the K-S statistic value, the p-value and the Q-Q plot for the transformed gamma
distribution support a very good fit of the data to the distribution. The gamma distribution
also presents a very good fit to the data. The conventional Weibull distribution also proved
to be a very good distribution for the data with the highest p-value. The other goodness-
of-fit statistics and graphics also supports a very good fit of the Weibull distribution to the
data. Meanwhile, the exponential and chi-square distributions reported the poorest fit to
the data among the distributions used for the analysis.

The 4-parameter transformed beta distribution gave the best fit to the wind speeds data
among all the distributions considered for the study based on its lowest AIC value. The K-S
statistic value and the p-value also confirmed its adequacy in fitting the data. The Burr
and inverse Burr distributions also gave good fits to the data. The paralogistic distribution
gave a very good fit to the data while the inverse paralogistic and log logistic distributions
gave very poor fits.

7. Conclusion

Fitting of specific probability distributions to observed wind speed samples of various lo-
cations has been carried out extensively in the literature. While the 2-parameter Weibull
distribution has been adopted more or less as the conventional wind speed model, studies
which include the one carried out in this paper have suggested that other probability distri-
butions may also be adequate. The over-arching purpose of these studies has been to show
which probability distribution best captures the wind condition of a particular location in
order to enhance policy formulations, engineering design of wind energy conversion devices
and systems.

We recommend based on the results obtained from the study that the gamma, Raleigh,
Burr, transformed gamma, paralogistic and Weibull distributions be considered as suitable
candidate models when undertaking wind power analysis and preliminary assessment and
design of wind turbines for low wind speeds zones. More so, the Weibull distribution offered
the best model from the study and should be adopted as the leading model in the analysis
of wind speed in the low wind speeds zones.
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