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Dichotomizing continuous data usually results in the loss of information and has the consequence
of reducing statistical power when the objective is to test for a statistical relationship between
variables. This article determines the cost of dichotomizing continuous data on the value of an
effect size that is, ’a quantitative measure of the strength of a phenomenon’ using both simulated
data and education data. The data set was estimated using the correlation coefficient, chi-square
and odds ratio to investigate the relationship between continuous assessment score and examina-
tion score among students. The result shows that the value of the correlation coefficient decreased
by 23.5% after dichotomizing the two variables as compared to before dichotomization, the value
of the chi-square decreased by 98.9% while the value of the odds ratio increased by 11.2%. Hence,
the effect of dichotomization on the strength of association between the two variables using the
three different statistical methods differ.
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1. Introduction

Dichotomization converts continuous variables into categorical variables by grouping the
values into two categories. It includes asserting that there is a straight line of effect between
one variable and another which are often much easier to deal with statistically. Some ad-
vantages of forcing all individuals into two groups are that it greatly simplifies statistical
analysis and leads to easy interpretation and presentation of results (Douglas and Patrick,
2006). Dichotomization has been used when researchers believe there are distinct groups of
individuals or is interested in group differences rather than individual differences (Iacobucci
et al., 2015). It involves utilizing a median split to create equal groups in an ex-post facto
method which helps to simplify the statistical analyses and interpretation of the results.
This however is believed to result in a loss of variability (MacCallum et al., 2002). Measure-
ments of continuous variables are often made in medicine and other experimental sciences,
aiding in the diagnosis and treatment of patients. In clinical practice it is helpful to label
individuals as having or not having an attribute, such as being ’hypertensive’ or ’obese’ or
having ’high cholesterol’, depending on the value of a continuous variable. In academics, a
student can be categorize as having good standing or not. It could be a pass or a fail. Cat-
egorization of continuous variables saves us the need for assumptions about the nature of
the relation between the variable and the outcome. It makes the analysis and interpretation
of results simple as it is quite easy to ascertain the work done and what the results are. Di-
chotomization however, leads to several problems and is usually criticized by statisticians.
A binary split at the median leads to a comparison of groups of individuals with high or
low values of the measurement, leading in the simplest case to a t test or chi-square test
and an estimate of the difference between the groups with its confidence interval. There is,
however, no good reason in general to suppose that there is an underlying dichotomy, and
if one exists there is no reason why it should be at the median (MacCallum et al., 2002).

For some variables under dichotomization, there are recognised cut-points, such as >
25kgm2 to define ’overweight’ based on body mass index. In the absence of a prior cut-point,
the most common approach is to take the sample median. However, using the sample median
implies that various cut-points will be used in different studies so that their results cannot
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easily be compared; seriously hampering meta-analysis of observational studies (Buettner
et al., 1997). Use of the ’optimal’ cut-point runs a high risk of a spuriously significant
result. That is, the difference in the outcome variable between the groups will be over-
estimated, perhaps considerably; and the confidence interval will be narrow (Altman et
al.,1994; Royston et al.,2006).

Dichotomization may increase the risk of a positive result being a false positive (Austin
and Brunner, 2004). Individuals close to but on opposite sides of the cut-point are char-
acterised as being very different rather than very similar. Also using two groups conceals
any non-linearity in the relation between the variable and outcome. When regression is
used to adjust for the effect of a confounding variable, dichotomization runs the risk that
a substantial part of the confounding remains (Austin and Brunner, 2004; Royston et al.,
2006). Nevertheless, all these approaches are preferable to performing several analyses and
choosing that which gives the most convincing result.

Dichotomisation can result in the loss of information and power (Altman and Royston,
2006; MacCallum et al., 2002) which makes the statistical power to detect a relationship be-
tween the variable and subject outcome reduced. It has been emphasized that dichotomiza-
tion is appropriate only when a threshold effect value truly exists. That is, if we can assume
some binary split of the continuous covariate (Abdolell et al., 2002).

Rousson (2014) studied the consequences of dichotomizing continuous data on the value
of an effect size in some classical settings. It turns out that the conclusions will not be
the same whether using a correlation or an odds ratio to summarize the strength of asso-
ciation between the variables; she illustrated her work using a data set to investigate the
relationship between motor and intellectual functions in children and adolescents.

In statistics analysis, the effect size can usually be measured in different ways. The corre-
lation, chi-square and odds ratio are established concepts of inferential statistics to measure
in a symmetric way the strength of an association (or an ’effect size’) between two variables.
In practice, one usually calculates a correlation if the variables are continuous, calculate
chi-square if the variables are categorical and one calculates an odds ratio if the variables are
binary. In this paper, we want to see whether or not the dichotomization of continuous data
often has the effect of decreasing the value of a correlation coefficient, chi-square and odds
ratio(OR). This research is therefore, aimed at measuring the effect size of dichotomization
of continuous data using correlation, chi-square and odds ratio.

2. Dichotomization and effect size

Effect size is a statistical concept that measures the strength of the relationship between
two variables on a numeric scale and it tells the differences in data regardless of sample size.
Effect sizes show practical or meaningful differences instead of simply statistical differences.
Effect size can be thought of as a measurement of the amount of impact an independent
variable has on a dependent variable (Murphy and Myors, 1998, p. 12).

Kristopher et al.(2005) presented in their work, the use of the Extreme Groups Approach:
A Critical Re-examination and New Recommendations, that the analysis of continuous
variables sometimes proceeds by selecting individuals on the basis of extreme scores of
a sample distribution and submitting only those extreme scores to further analysis The
authors illustrate the effects extreme groups approach can have on power, standardized
effect size, reliability, model specification, and the interpretability of results.

Estimates of effect size can be classified as unstandardized or standardized. Unstandard-
ized effect size estimates reflect the magnitude of an effect in raw units of whatever is being
measured while the Standardized effect size estimates like (rxy,R2,ω2,η2,cohen’s d) are ex-
pressed in common metrics unrelated to the raw scales of measurement of the observed
variables(Kristopher et al., 2005).

Generally, dichotomization of continuous variable can increase or decrease an effect size
depending on the method of measuring the association between the two groups. When X
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and Y are continuous random variables, one of the appropriate estimator of an effect size of
a linear relationship between X and Y is the Pearsons correlation coefficient, r (rho), which
measures the strength of the linear relationship between two variables on a continuous scale
A typical example for quantifying the association between two variables measured on an
interval/ratio scale is the analysis of relationship between a students continuous assessment
(CA) score and examination score. Each of these two characteristic variables is measured
on a continuous scale. When a continuous variable is dichotomized, it will give a lesser value
of correlation than if not dichotomized. We are excluding the frequently difficult technique
of creating a dichotomous variable by arbitrarily dichotomizing originally continuous scores
into two groups; below the median and above the median known as the median split.

If one variable is measured continuous and the second variable is dichotomous (has two
outcomes), then the point-biserial correlation coefficient is appropriate. The point-biserial
correlation is mathematically equivalent to the Pearson correlation, that is, if we have one
continuously measured variable X and a dichotomous variable Y , rxy = rpb. This can be
shown by assigning two distinct numerical values to the dichotomous variable. Other com-
binations of data types (or transformed data types) may require the use of more specialized
methods to measure the association in strength and significance.

The chi-square test for association (contingency) is a standard measure for association
between two categorical variables. The chi-square test, unlike Pearson’s correlation coef-
ficient or Spearman rho, is a measure of the significance of the association rather than a
measure of the strength of the association.

To reduce the error in approximation, Frank Yates, an English statistician, suggested a
correction for continuity that adjusts the formula for Pearson’s chi-squared test by sub-
tracting 0.5 from the difference between each observed value and its expected value in a
2× 2 contingency table (Yates, 1934).This reduces the chi-squared value obtained and thus
increases its p-value (Sokal and Rohlf, 1981).The effect of Yates’ correction is to prevent
overestimation of statistical significance for small data. This formula is chiefly used when
at least one cell of the table has an expected count smaller than 5. Unfortunately, Yates’
correction may tend to over-correct.

The phi coefficient (also referred to as the ’mean square contingency coefficient’ and
denoted by ϕ (or rϕ)) is a measure of association for two binary variables. Introduced by
Karl Pearson (Cramer, 1946)),this measure is similar to the Pearson correlation coefficient
in its interpretation. In fact, a Pearson correlation coefficient estimated for two binary
variables will return the phi coefficient (Guilford, 1936). The square of the Phi coefficient is
related to the chi-squared statistic for a 2×2 contingency table (Everitt, 2002). Two binary
variables are considered positively associated if most of the data falls along the diagonal
cells. In contrast, two binary variables are considered negatively associated if most of the
data falls off the diagonal. Phi is related to the point-biserial correlation coefficient and
Cohen’s d and estimates the extent of the relationship between two variables (2×2) (Aaron
et al., 1998).

The OR is one of three main ways to quantify how strongly the presence or absence of
property A is associated with the presence or absence of property B in a given population.
If each subject in a population either does or does not have a property ’A’, (e.g. ’fail exam’),
and also either does or does not have a property ’B’ (e.g. ’fail test’) where both properties
are appropriately defined, then a ratio can be formed which quantitatively describes the
association between the presence/absence of ’A’ (fail exam) and the presence/absence of
’B’ (fail test) for subjects in the population. This ratio is the OR and can be computed
following these steps. For a given individual that has ’B’ compute the odds that the same
individual has ’A’. For a given individual that does not have ’B’ compute the odds that the
same individual has ’A’. Divide the odds from step 1 by the odds from step 2 to obtain the
OR (Cornfield, 1951; Mosteller and Frederick, 1968; Edwards,1963).
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3. Materials and method

3.1 Data Description

The data used for this research are from the raw test scores and examination scores for a
particular course of some students in Yaba College of Technology for the just concluded
semester. The test score is a proxy for the CA and the semester examination scores represent
exam scores. It is expected that students with high CA will also score high in examination.
The CA score is graded over 30 while the examination score is graded over 70.

3.2 Methods of dichotomization

• Median split – dichotomizing variables at the median to create equal ’high’ and
’low’ group. Median split involves when we divide a sample into two groups based
on whether each score on a continuous predictor variable is above or below the
median prior to conducting analyses (Iacobucci et al., 2015a). This is the most
common method for dichotomization (MacCallum et al., 2002).
• Quartile splits – dichotomizing at the quartiles could be used to create groups who

are ’high’ or ’low’ using the third or first quartile (respectively). However, this would
cut out data between the first and third quartile range. Alternatively, if the groups
consist of the third quartile and higher as one group and all data points lower than
the third quartile, this will result in unequal sample sizes as well.
• Mean split – dichotomizing variables at the mean which simply involves dividing

data into groups which could result in unequal groups if the data is skewed or
there exists the presence of outliers. The mean spilt method involves splitting the
data based on their characteristics of interest and then finding the mean of both
groups for example, using the smoker variable, Patients are divided into smokers
and non-smokers and then the mean weight for each group is calculated.

3.3 Evaluating an effect size by correlation measures

The (Pearson) correlation r between two variables X and Y is defined as the covariance
between X and Y divided by the product of their standard deviations. Equivalently, this
is the least squares regression slope of Y on X, multiplied by the standard deviation of X,
and divided by the standard deviation of Y , yielding:

r =
n
∑
XY −

∑
X

∑
Y√

(n
∑
X2 − (

∑
X)2)(n

∑
Y 2 − (

∑
Y )2)

=
Cov(X,Y )√
V ar(X)V ar(Y )

= β

√
V ar(X)

V ar(Y )
(3.1)

where β = Cov(X,Y)/V ar(X). This definition applies that as long as X and Y are contin-
uous and also when X and/or Y are binary. If X is binary (with possible values 0 and 1),
the regression slope is simply a mean difference. If both X and Y are binary, the regression
slope is a difference of proportions. When X is binary and Y is continuous, r is sometimes
called the ’point biserial correlation’, whereas r is known as the ’phi coefficient’ when X
and Y are binary (Rousson, 2014).The value of the effect size of Pearson r correlation varies
between -1 to +1. The effect size is low if the value of r varies around 0.1, medium if r
varies around 0.3, and large if r varies more than 0.5. (Cohen, 1992).

3.4 Evaluating an effect size by chi-square measures

The Chi-square (χ2) between two variables X and Y is defined as the ratio of the square of
the difference between the observed and expected value and the expected value. The χ2 is
mostly used for count data. If the variables are categorical, then χ2 is appropriate. However,
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there are different measures of the χ2, we have interval- interval, interval-ordinal, ordinal-
ordinal and binary-binary and the Yates corrected χ2. In practice, the χ2 is computed
as

χ2 =

r∑
i=1

n∑
i=1

(Oij − Eij)
2

Eij
(3.2)

where Oij is the observed frequency at row i and column j from a contingency table or
cross tabulation of variables X and Y . Eij is the expected frequency at row i and column
j.

3.5 Evaluating an effect size by odds-ratio measures

The OR is another suitable effect size. It is appropriate when the research question focuses
on the degree of association between two binary variables. The OR is another concept to
the correlation for measuring the strength of association between two quantitative variables
X and Y . The OR has been generalized to quantitative (including continuous) variables by
Agresti (1980). The OR ω between two quantitative variables X and Y is defined as:

ω =
Pr{Y1 > Y2 | X1 > X2}
Pr{Y1 < Y2 | X1 > X2}

(3.3)

where (X1, Y2) and (X2, Y2) are two independent observations of (X, Y ). The numerator
is referred to as the ’probability of concordance’ and the denominator as the ’probability
of discordance’.

Let X and Y be two continuous variables. In this research, we shall restrict our attention
to the case where (X, Y ) is uniformly distributed with correlation r, where we consider
without loss of generality that X and Y have minimum of 0 and maximum 1.

Since Y is continuous, the probability to have a tie (Y1 = Y2) is zero such that:

ω =
Pr{Y1 > Y2 | X1 > X2}

1− Pr{Y1 > Y2 | X1 > X2}
(3.4)

One has then:

Pr{Y1 > Y2 | X1 > X2} =
Pr{X1 > X2 and Y1 > Y2}

Pr{X1 > X2}
(3.5)

Pr{Y1 > Y2 | X1 > X2} =
Pr

{
X1−X2√

2
> 0 and Y1−Y2√

2
> 0

}
Pr

{
X1−X2√

2
> 0

} (3.6)

Since the binormal of (X, Y ) implies that X1, X2, Y1, and Y2 are uniformly normally
distributed, the variables X1−X2√

2
> 0 and Y1−Y2√

2
> 0 are also uniformly normally distributed

and one may check that their correlation is still equal to r. One has thus:

Pr{Y1 > Y2 | X1 > X2} =
PrX > 0 and PrY > 0

PrX > 0
=

A

A+D
(3.7)

where A and D are defined as:
A=Pr Xd=1 and Yd=1
B=Pr Xd=0 and Yd=1
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C=Pr Xd=0 and Yd=0
D=Pr Xd=1 and Yd=0
with PX = PY = 0.5. Since D = 1

2 - A, one has PrY1¿Y2 — X1¿X2 = 2A and hence ω =
2A

1−2A .

4. Result and discussion

A sample of size m = 100 from a uniform distribution with parameters a = 20 and b = 70
and replicated n = 1000 times was used to simulate the examination score and a sample of
size m = 100 from a uniform distribution with parameters a = 0 and b = 30 and replicated
n = 1000 times was used to simulate the continuous assessment score. The two variables
were sorted to have high collinearity. The simulation was repeated for the exam and CA
using normal distribution with parameters with parameters µ = 37 and σ = 10 for exam
while parameters µ = 16 and σ = 9 are used for the CA. The average scores after sorting
for the exam and the CA were taken to represent the simulated data.

The descriptive statistics of the result of the simulated result is displayed on Table 1.
While that of the real life data is displayed in table 2. Figure 1 and Figure 2 depict the
unsorted simulated scatter plot for uniform and normal generated data.
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  Figure 1: Simulated Uniform Distribution                 Figure 2: Simulated Normal Distribution 

Figure 2 (left) depicts the scatter plot of the average sorted simulated data, showing a
near perfect correlation and (right) depicts the scatter plot of the real-life data (actual
result of the students). Figure 4(left and right)shows the boxplot of simulated CA and
Exam respectively, while Figure 5 (left and right) shows that of the real-life data. Figure
3 shows the normalized score of the real-life data in a scatter plot portioned into A, B, C
and D.

The actual data were normalized using the formula stated below as:

Yi =
Exami − Exammin

Exammax − Exammin
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                  Figure 3: Simulated Regression                                       Figure 4: Actual Data- Exam on CA 
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Figure 5: Normalized between 0 and 1 

and

Xi =
CAi − CAmin

CAmax − CAmin

where Exami is the exam score for student i and CAi is the CA score for student i.
Exammax and Exammin are the highest exam and lowest exam scores respectively. CAmax

and CAmin are the highest and the lowest CA scores respectively. Yi is the normalized exam
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          Figure 6: Box plot for simulated CA                       Figure 7: Box plot for simulated exam  
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     Figure 8: Box plot for actual CA                               Figure 9: Box plot for actual exam 
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Figure 1. Box Plot for Actual CA (left) & Box Plot for Actual Exam (right)

score for student i while Xi is the normalized CA score for student i.
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4.1 Simulated data analysis

Table 1: Descriptive Statistics of Simulated Data

Variable Obs Mean Std.Dev. Min Max
exam 1000 36.99 9.66 20 53
CA 1000 15.67 8.52 1 30

Table 2: Descriptive Statistics of Normalized Simulated Data Between 0 and 1

Variable Obs Mean Std.Dev. Min Max
Yd 1000 0.5080 0.5002 0 1
Xd 1000 0.5200 0.4998 0 1

For the normalized variables, the minimum is zero and the maximum is 1. It is from these
values that we dichotomized the continuous variables. Values below the mean are 0, while
values greater than or equal to the mean are 1. So, the dichotomized variables are Yd and
Xd for Exam and CA respectively.

Table 3: Contingency Table of Simulated Exam and CA

Exam
0 1

0 480 0
CA 1 12 508

Table 4: Probability Distribution Table

Exam
0 1

0 0.4800 0.000
CA 1 0.1002 0.5080

A = 0.5080, B = 0.0000, C = 0.4800, D = 0.1200,
PX = B + C = 0.0000 + 0.4800 = 0.4800,
PY = D + C = 0.1200 + 0.4800 = 0.6000,
A + B + C + D = 0.5080+ 0.0000 + 0.4800 + 0.1200 = 1.
Note that r is the correlation between X and Y , r1 is the correlation between Xd and Y
while r2 is the correlation between Xd and Yd.

r=0.997
r1=0.847

r2 =
AC −BD√

(A+D)(B + C)(A+B)(D + C)

=
(0.5080)(0.4800)− (0.0000)(0.1200)√

(0.5080 + 0.1200)(0.0000 + 0.4800)(0.5080 + 0.0000)(0.1200 + 0.4800)

= 0.7820
OR = AC/BD = ∞

The OR is the ratio of the probability of concordance to that of the probability of discor-
dance.
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Measuring Effect Size - Correlation Coefficient
Pearson correlation coefficient between Y and X = 0.997 with P-Value = 0.000
Pearson correlation coefficient between Yd and X = 0.847 with P-Value = 0.000
Pearson correlation coefficient between Y and Xd = 0.847 with P-Value = 0.000
Pearson correlation coefficient between Yd and Xd = 0.976 with P-Value = 0.000
The coefficient of correlation was reduced from 0.976 for both continuous variables to 0.976
after dichotomization of the continuous variables. The correlation coefficient was reduced
by 2.1%.

Measuring Effect Size - Chi-square
The Pearson Chi-Square for Y and X = 23205.010, with degrees of freedom = 1620
The Pearson Chi-Square for Yd and Xd= 953.096, with degrees of freedom = 1.
The Chi-Square was reduced from 23205.010 for both continuous variables to 953.096 after
dichotomization of the continuous variables. The Chi-Square was reduced by 95.89%.

Measuring Effect Size - OR
The OR between Yd and Xd using binary regression is 6420498.580 with P-value = 0.000.
The OR between Yd and Xd using binary regression is 68388435053.045 with P-value =
0.000. The OR was increased from 6420498.580 for one continuous and one dichotomized
variable to 68388435053.045 after dichotomization of the continuous variables. The odds
ratio was increased by 99.99%.

4.2 Application Data

Table 5: Descriptive Statistics of Raw Scores

Variable Obs Mean Std.Dev. Min Max
exam 113 38.12 16.26 2 67
CA 113 16.66 6.39 1 30

Table 6: Descriptive Statistics of Normalized Data Between 0 and 1

Variable Obs Mean Std.Dev. Min Max
exam 113 0.5558 0.25012 0 1
CA 113 0.5401 0.22049 0 1

For the normalized variables, the minimum is zero and the maximum is 1. It is from these
values that we dichotomized the continuous variables. Values below the mean are 0, while
values greater than or equal to the mean are 1. So, the dichotomized variables are Yd and
Xd for Exam and CA respectively.

Table 7: Contingency Table of Exam and CA

Exam
0 1

0 29 24
CA 1 13 47

Table 8: Probability Distribution Table

Exam
0 1

0 0.2566 0.2124
CA 1 0.1150 0.4159

A = 0.4159, B = 0.2124, C = 0.2566, D = 0.1150
PX = B + C = 0.2124 + 0.2566 = 0.4690
PY = D + C = 0.1150 + 0.2566 = 0.3717
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A + B + C + D = 0.4159 + 0.2124 + 0.2566 + 0.1150 = 1

Note that r is the correlation between X and Y , r1 is the correlation between Xd and Y
while r2 is the correlation between Yd and Xd.

r=0.446
r1=0.395

r2 =
AC −BD√

(A+D)(B + C)(A+B)(D + C)

=
(0.4159)(0.2566)− (0.2124)(0.1100)√

(0.4159 + 0.1150)(0.2124 + 0.2566)(0.4159 + 0.2124)(0.1150 + 0.2566)

= 0.341
OR = AC/BD = 4.369

The OR is the ratio of the probability of concordance to that of probability discordance.

Measuring Effect Size - Correlation Coefficient
Pearson correlation coefficient between Y and X = 0.446 with P-Value = 0.000
Pearson correlation coefficient between Yd and X = 0.356 with P-Value = 0.000
Pearson correlation coefficient between Y and Xd = 0.395 with P-Value = 0.000
Pearson correlation coefficient between Yd and Xd = 0.341 with P-Value = 0.000
The coefficient of correlation was reduced from 0.446 for both continuous variables to 0.341
after dichotomization of the continuous variables. The correlation coefficient was reduced
by 23.54%.

Measuring Effect Size - Chi-square
The Pearson Chi-Square for Y and X = 1239.215, with degrees of freedom = 1107
The Pearson Chi-Square for Yd and Xd= 13.163, with degrees of freedom = 1.
The Chi-Square was reduced from 1239.215 for both continuous variables to 13.163 after
dichotomization of the continuous variables. The Chi-Square was reduced by 98.9%.

Measuring Effect Size - OR
The OR between Yd and Xd using binary regression is 3.882 with P-value = 0.000.
The OR between Yd and Xd using binary regression is 4.369 with P-value = 0.000.
The OR was increased from 3.882 for one continuous and one dichotomized variable to
4.369 after dichotomization of the continuous variables. The odds ratio was increased by
11.15%.

5. Conclusion and recommendation

The practice of dichotomization has been strongly criticized in the literature, mainly be-
cause of the loss of statistical power mentioned, but also because of the interpretational
problems caused by dichotomization. This is especially true with normally distributed vari-
ables, where a majority of the observations lie near the median. In that case, many obser-
vations that are close apart on the continuous scale will not be in the same category after a
median dichotomization. In this research, our purpose is to study the effect of dichotomiza-
tion of continuous variable on the value on an effect size. For this, we have retrieved and
gathered several formulae to calculate a correlation, chi-square and an OR in classical set-
tings involving dichotomized continuous variables. We observe that a dichotomization made
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at the median of a normal distribution will decrease the value of our result using correlation
by 23.54%, it will decrease the result of the chi-square value by 98.9% and will increase the
OR by 11.2%. The decrease of the correlation and chi-square as well as the increase of the
OR is still more important if the dichotomization is made away from the median.

The square of a correlation can be interpreted as the percentage of variance of one variable
that can be linearly predicted by the other. The value of a chi-square can be regarded as
the measure of the discrepancies between observed and expected frequencies. An OR can
be interpreted as the ratio of the probabilities of concordance and discordance. Which is
the most relevant information? It is probably a matter of taste. Interestingly, the usual
practice which consists of calculating a correlation in the case of continuous variables, the
calculation of chi-square in the case of categorical variable and calculating an OR in the
case of binary variables, is the one for which the chosen measure of strength of association
cannot be improved by changing the nature of the scales of the variables, a correlation
being at its highest when the scales are continuous, a chi-square is best for categorical data
while an odds ratio being at its highest when the scales are binary.

There are still other ways to quantify an association between two variables, which may
provide still other messages regarding the effect of dichotomization on the strength of asso-
ciation. Instead of considering the ratio of the probabilities of concordance and discordance,
one may consider their difference, obtaining Kendalls t in the case of continuous variables,
in the case of a binormal distribution with correlation r.

In conclusion, while it is true, from an inferential statistics point of view, that the conse-
quences of dichotomizing continuous data will be in most cases a ’loss of statistical power’,
it is not clear, from a descriptive statistics point of view, whether it leads at the same time
to a ’loss of effect size’, the conclusion depends on the measure of association, which is used
to quantify this effect. It is therefore recommended to study many literature to ascertain
the best method of measuring association between two variables. We however recommend
the use of correlation for two continuous variables, chi-square for categorical variables and
odds ratio for two binary variables.
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