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Data density estimation provides estimates of the probability function from which a set of data
is drawn. It is better to estimate density from the data, hence the variable bandwidth approach.
One of the popular approach in density estimation is the multivariate kernel density estimation
(MKDE). 1t is a nonparametric estimation approach which requires a kernel function and a band-
width. This work focuses on a proposed modified intersection of confidence intervals (MICIg)
approach in the multivariate data density estimation. It is based on the intersection of confi-
dence intervals (ICI). It is an attempt to correct the problem of discontinuities and boundary
value problem in the density to be constructed. The quality of the estimates obtained of the
proposed approach showed some improvements over the existing methods in kernel density esti-
mation. This is seen in the lower asymptotic mean integrated error (AMISE) and a relative rate
of convergence in the approach.
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1. Introduction

Data density estimation provides estimates of the probability function from which a set of
data is drawn. Density is better estimated from the data set. In density estimation, the
true density is unknown. One of the popular approaches is the multivariate kernel den-
sity estimation. It is a nonparametric estimation approach which requires a kernel function
and a bandwidth (window size or smoothing parameter H). When we consider the variable
window sizes on the multivariate cluster kernel density estimation (MCKDE) and the inter-
section of confidence interval (ICI) approaches for estimating densities, we identified points
for improvements, so that the methods could be adaptive to the multivariate kernel density
estimation (MKDE). In most cases, the above methods could lead to under-fitting of the
data set density, an indication that the methods are often less optimal result. See Bow-
man and Azzalini (1997) and Zhang and Chan (2011). In this presentation, a data-driven
approach that requires only the knowledge of the use of pilot plots and the bandwidth
sizes from the data set with a view to correcting the identified problems, while aiming for
lower asymptotic mean integrated squared error (AMISE) and faster rates of convergence
in the approaches is proposed. The aim of this study is basically on how to fit density to
observations in the multivariate data sets.

The multivariate kernel density estimator that we are going to study is a direct extension
of the univariate kernel estimator. Let X1, ..., X;, denote a d-variate random sample having
a density f. We shall use the notation X; = (X1, ..., Xm)T to denote the X7 and a generic
vector X € R? has the representation z = (x1,...,24)’. The d-variate random sample
X1, ..., X, drawn from f the kernel estimator evaluated at x is given by:

FOX ) = -3 Kae - X) (1.1
i=1
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where n is the sample size, and H is a symmetric positive definite d x d matrix called
the bandwidths, the smoothing parameters or the bandwidth matrix, and Kgy(x) =
|H|":K(H 2z), |.| stands for the determinant of H and K is d-variate kernel satisfying
J k(z)dx = 1 which is a regularity condition, where the integral is over R% unless stated
otherwise. However, in choosing kernel to use, the gaussian kernel

1 u?

Zear(=5)

K(u) =

is a popular choice among many kernels. Silverman, (1986), Bowman and Azzalini (1997),
Kathovnik and Shmulevich (2002). However, the matrix H is a smoothing parameter. It
specifies the 'width’ of the kernel around each sample point Xj.

When we consider the works on variable bandwidths sizes in the average cluster approach
and the intersection of confidence interval (ICI) methods applied to MKDE, one is tasked
with how sensitive these methods are, and the errors committed using these methods?
What are the effects when we extend them to multivariate kernel density? These questions
led to the reasons for their modifications. We identified areas for improvements, so that
the methods could be more adaptive. This work is basically concerned with a method of
achieving adaptive multivariate kernel density estimation. The aim of this study includes
how to fit density to data sets.

2. Literature Review

There exist some methods of estimating bandwidths in the multivariate kernel density.
Some of these methods use a fixed window width. However, approaches that uses varied
window widths in the course of density estimation which seems adaptive are few. A re-
view of available variable methods showed basically that the cross-validation, the plug-in
bandwidths approaches or any subjective method (which are fixed smoothing approaches).
See Doung and Hazelton (2005) and Dicu and Stanga (2013). There is the cluster and the
average cluster approach by Wu and Tsai (2004), Wu et al (2007) and Ogbeide et al (2016)
which are more data sensitive are often used. The window width controls the smoothness
of the fitted density curve. The true density is unknown.

H = inAMISE(H
AMISE = agrmin SE(H)

According to Wand and Jones (1995) and Horova et al (2008), they asserted that it was
better to estimate optimal MISE element-wise. They further asserted that the ideal optimal
bandwidth selector that is point-wise adaptive is given by

Hanise :agrinigAMISE(H) (2.1)
€

where agr is partition optimal evaluation of bandwidths from the data. See Horova et al
(2008). So we shall adopt point-wise adaptive bandwidth procedures in estimating densities,
where H is equivalent to the selection of optimal h;; in {Hi,..., H,}. In order to correct
the problem of over fitting and under fitting of the data density as the case may be as
observed in Dicu and Stanga (2013) and Ogbeide et al (2016), hence, the modifications
of the ICI approach to density estimation. This modified approach adjusts the amount of
bandwidths using some idea from the kernel nearest neighbour estimation of the density
to the multivariate data. Its smoothing parameter would be a n x d dimensional matrix
obtained from forming relevant number of clusters in an information matrix. The Euclidean
distance would be used to form bandwidths.
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3. Methodology

In this section, the proposed method of estimating densities is presented. This method is the
modified intersection of confidence intervals (MIC1Iy) approach. The MICIy procedure
is basically a minimization of AMISE(H;) with respect to H, where it is equivalent to the
selection of optimal h;; in {H1, ..., H,}

Our data driven bandwidth matrix selector H is point-wise data adaptive base selection
approach. Its density uses a pilot plot in order to address identified problem(s). Equation
(3.2.1) is proposed,

Hamise :angminHAMISE(H) (3.1)
Assume that
H={H, < Hy,<..H,} (3.2)

is a finite collection of window sizes, starting with a smallest h;; € H and we determine a
sequence of confidence intervals given by

Dij =Ly, Uylyi=1,..n,j =1i,..d

Zj’

Li; = fu,,(Xi) — B.std{ fu,,(X:)} (3.3)

= fu,(X;) — B.std{ fu,,(X:)}

Each h;; corresponding to a value in H;; € H, We assume the data at hand is normally
distributed. Subjecting the data to normality, we propose = 1.06 via normal reference
rule. See Scott (1992).

Next compute,

where

abs[L;;, U] = |[Lij, Uyl = ZZILU U,;)?

=1 j=1

See Gray (1997) for lengths and distances’ details. Subjectively we adopt v = 2 , consid-
ering pilot plots. Where v is a positive real number. The MICIy procedure is based on
consideration of the intersection of the adjusted intervals D;; , 1 < < d. So, we use the
bandwidth sizes Hop, ,(X) where

Hopt,, (X) = [ abs [Lij» Usj ]] with Hopt, (X) < Hopt, (X) (3.5)
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hi1 hig ... hig

hoty haa ... haq
where H = (h;;) =

hont hng - . . hpd

Consequently, substituting bandwidths h;; from equation (3.5) into the kernel density
estimator

Fu (X, H) = 3 Kl — X)
=1

to obtain the density estimates. Thus, we proposed an algorithm.

Algorithm 1
The algorithm involves the following steps:
Step 1: L;; < —o0, U;; <= —00, j =1,2,--- |n

Step 2: while (L;; < U,;) and (i < j) do
Step 3: Ly; <= fu,,(Xi) — B.std{ fu,, (X:)}
Step 4: Uy; <= fu,,(Xi) + B.std{ fu, (X)}
Step 5: L;; <= maz[L, L;;], U;; <= min[U, U,
Step 6: i <= i+ 1

Step 7: Hoptij (X) - [GTE)S[LZJ,QZ]]]

Step 8:doi<=i+1
Step 9: HOPti(X) < Hoptz‘—l(X)
Step 10: Compute h;; in H € H;

Step 11: end while (i = n).

4. Results

4.1 Application/Results

We present estimates based on mode related expectation adaptive maximization (MEAM)
imputation approach. Here we use the data of Rubin and Little (2002, Pg 310, exercise 14.7)
on a survey of 20 graduates of a university class five year after graduation with missing data
of race (White or Others) and income (in Dollar). 1 represents male, 2 represents female.
1 represents white race, 2 represents the other race and - represents missing observations.
The results are presented in the Appendix.

The calculated bandwidth selections errors and convergence rate from the data set with
missing observation in Rubin and Little (2002, Pg 310) are given in Table 4.4 in the Ap-
pendix. The relative errors, h* (which is the error in relation to the fixed optimal bandwidth
value), and the convergence rates of methods are also calculated therein.
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Table 4.4 showed that there are reduced relative errors, h* (which is the error in relation to
the fixed optimal bandwidth value) and AMISE* in the proposed methods. The proposed
method has faster convergence rates compared to other versions. That is, the M IC Iy have
lower error propagation and faster convergence rates when used to estimates the Little and
Rubin (2002) data with fixed optimal H, MCKDE and the MMCKDE approaches. The
estimated bandwidth selection errors and convergence rates from the data set with missing
observation in Rubin and Little (2002, Pg 310) data, via the various methods favour the use
of the M ICIy approach over the other approaches. This is because its bandwidth errors are
smaller as well as having higher convergence rate. The MMCKDE has some improvement
over the MCKDE approach. These can be seen in Table 4.3 and Table 4.4. Generally, the
AMISE shows the difference between the ”"true density” and the estimated density. The
AMISE for MICIp is smaller than that of MMCKDE and MCKDE approaches.

The graphical displays (see Appendix) from the various approaches have identifiable
differences from Figures la-2d, using the fixed H, MCKDE, MMCKDE and MICIg for
the dataset in Little and Rubin (2002) page 310. The MICIy did not indicate under
fitting for the dataset. The application of the modified intersection of confidence intervals
(MICIp) corrects identified cluster sampling points of discontinuities in the multivariate
kernel nearest neighbour density estimates. The MICIy method which is based on the
ICI rule, produces smaller but optimal smoothing parameters extended to the multivariate
data set. This is an attempt to achieve reduced error and show more hidden features of the
density.

4.2 Advantages of the proposed MICIyg method

(1) The MICIg scheme produces smaller but optimal smoothing parameters. The es-
timates of the smoothing parameters h;j; are smaller in M IC Iy scheme when com-
pared to the ICI approach. This contributes significantly to the density estimate by
showing more hidden features of the density.

(2) The choice of the smoothing parameters h;; in H; € H follows the procedure
Hopt,(X) < Hypt, (X)) in each coordinate directions. This enables the bandwidth
to be controlled such that no new bandwidth h would be larger than the preceeding
bandwidths. This ensures that the scheme is adaptive. Otherwise the scheme is done
in reversed order. The procedure Hop, (X) < Hop, ,(X) can be seen in step 9 of
the proposed algorithm.

(3) This approach provides full bandwidths matrix from the data, (see Table 4.2.) for
the multivariate kernel density estimation. This is a better approach because it is
data sensitive.

Like in every other improved method, the M ICIy scheme requires only simple but two
additional steps when compared to the ICI approach. These additional procedures are in
the choice and application of the smoothing parameters to multivariate density estima-
tion. MICIy and MMCSKDE generate full bandwidths matrices. The cost of these steps
brings about the adaptive density to be constructed. So far the Modified Intersection of
Confidence Interval (M IC 1) approach in estimating density has been presented. Some im-
provements were seen, when the quality of the density estimates obtained by this approach
were compared with other approaches using the mean-squared error criterion.

5. Conclusion

The quality of the proposed approach estimates have shown some improvements when
assessed and compared with the estimates obtained using existing approaches. These are
seen in the errors generated using these proposed approach. The M ICI convergence rates
compared to some other known approaches when applied to some data sets showed an
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improvement.
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Appendix

List of tables

Table 4.1: The estimates of data set with missing observation in Rubin and Little (2002,
Pg 310) using the MEAM imputation approach.

Case 1 2 3 4 3 [ 7 [ 9 10 11 12 13 14 13 16 17 18 19 20
Sex 1 1 1 2 2 2 2 2 2 2 2 1 1 2 2 1 1 1 2 2
Race 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

MEAMzc., 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1
Income 23] 46| 31| 05 16 | 26 08 10 02 - - 20 20 - 32 - - 38 15

MEAM 13146 31| 03 16 | 26 08 10 02 11.1666 | 112380 | 20 29 37292 32 34 | 346873 38 15 11.6003
Income

Table 4.2: Estimated bandwidths for the multivariate cluster sampling kernel density es-
timation (MCKDE), the modified multivariate cluster sampling kernel density estimation
(MMCKDE) and MICIy approaches for data set with missing observation in Rubin and
Little (2002, Pg 310).

Dalta Approaches
point

Fixed |MCKDE | MMCKDE |MiCly |Fixed | MCKDE | MMCKDE | MICIy

X HRa*ﬂ Race Race Race ﬁm Income Income Income
1 0.2500 0.2500 0.2500 02500 | 21500 | 50000 5.0000 5.0000
2 | 02500 0.2500 0.2500 0.2500 | 21500 | 75000 7.5000 | 5.5000
3 0.2500 0.2500 0.2500 0.2500 | 51900 | 45000 45000 45000
4 | 02500 0.2500 0.2500 0.2500 | 21900 | 430000 6.5000 6.5000
5 0.2500 0.2500 0.2500 02500 | 21900 | 55000 27500 4.9300
6 0.2500 0.2500 0.2500 0.2500 | 51500 | 4 1p00 2.0800 4.1600
7 | 02500 0.2500 0.2500 02500 | 21500 | 50000 5.0000 4.7900
8 | 02500 0.2500 0.2500 0.2500 | 31500 | g 0000 45000 | 4.0500
9 0.2500 0.2500 0.2500 0.2500 | 51500 | 10000 1.0000 22100
10 | 0.2500 0.2500 0.2500 02500 | 21900 | 54000 5.4000 4.7000
11| 02500 1.0000 0.5000 02300 | %1500 | 54000 5.4000 4.9000
12 | 02500 0.2500 0.2500 0.2500 | 51500 | 35000 3.5000 3.4500
13| 02500 0.2500 0.2500 0.2500 | 21500 | 45000 45000 | 3.2500
14 | 0.2500 0.2500 0.2500 02500 | 21900 | 54400 5.1400 4.2700
15 | 0.2500 0.2500 0.2500 0.2500 | 51500 | 3400 3.6400 3.1200
16 | 0.2500 0.2500 0.2500 02500 | %1500 | 47100 1.7100 2.0300
17 | 0.2500 1.0000 0.5000 02300 | 21500 | 474gp 0.8550 1.2200
18 | 0.2500 0.2500 0.2500 0.2500 | 51500 | 46900 4.6900 4.5300
19 | 02500 0.2500 0.2500 0.2500 | 31500 | 44500 57500 | 5.0200
20 | 02500 0.2500 0.2500 0.2500 | 51500 | 10600 1.0600 1.0400
var | 0.0000 0.2812 0.1875 0.0072 | 0.0000 | 8.003 7.7639 | 6.9157
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Table 4.3: Estimated densities for the multivariate cluster sampling kernel density esti-
mation (MCKDE), the modified multivariate cluster sampling kernel density estimation
(MMCKDE) and M ICTy approaches from the data set with missing observation in Rubin
and Little (2002, Pg 310).

Data Density estimates from varous bandwidths approaches
point
Fixed H Fixed H
density | MCKDE | MMCKDE | yrer | geme | MCKDE | MMCKDE | MICIy
X Race Race Racs | Racs Income Income Income

1 0.0414 0.0414 0.0414 0.0414 0.0543 0.0543 0.0543 0.0543
2 0.0414 0.0414 0.0414 0.0414 0.099 0.0981 0.099 0.0993
3 0.0414 0.0414 0.0414 0.0414 0.0674 0.0660 0.0674 0.0674
4 0.0414 0.0414 0.0414 0.0414 0.0109 0.0109 0.0163 0.0171
5 0.0414 0.0414 0.0414 0.0414 0.0348 0.0348 0.0370 0.0382
6 0.0414 0.0414 0.0414 0.0414 0.0565 0.0565 0.0770 0.0830
7 0.0414 0.0414 0.0414 0.0414 0.0177 0.0174 0.0174 0.0172
8 0.0414 0.0414 0.0414 0.0414 0.0301 0.0331 0.0329 0.0331
9 0.0414 0.0414 0.0414 0.0414 0.0042 0.0043 0.0043 0.0044
10 0.0414 0.0414 0.0414 0.0414 0.0231 0.0279 0.0279 0.0281
11 0.0482 0.0488 0.0499 0.0501 0.0267 0.0312 0.0324 0.0332
12 0.0820 0.0820 0.0820 0.082 0.0431 0.0435 0.0554 0.0556
13 0.0820 0.0820 0.0820 0.0820 0.0621 0.0630 0.0630 0.0640
14 0.0820 0.0820 0.0820 0.0820 0.0846 0.0853 0.0867 0.0872
15 0.0820 0.0820 0.0820 0.0820 0.0693 0.0695 0.0693 0.0693
16 0.0414 0.0414 0.0414 0.0414 0.0414 0.0401 0.0267 0.0269
17 0.0414 0.0414 0.0418 0.0421 0.0826 0.0826 0.0826 0.0/
18 0.0414 0.0414 0.0414 0.0414 0.0825 0.0825 0.0825 0.0831
19 0.0414 0.0414 0.0414 0.0414 0.0341 0.0345 0.0347 0.0334
20 0.0414 0.0414 0.0414 0.0414 0.0279 0.0279 0.0257 0.0230

Density

sum 0.9972 0.9978 0.9993 0.9998 0.9523 0.9601 0.9927 0.9995

Table 4.4: Table of bandwidth selections errors and convergence rate from the estimated
bandwidths for the race and income using the multivariate cluster sampling kernel density
estimation (MCKDE), the modified multivariate cluster sampling kernel density estimation
(MMCKDE) and the MICIy approaches from the data set with missing observation in
Rubin and Little (2002).

Approach| Relative Variance S5 h* AMISE* Convergence
EITOT V; rate
MCKDEg.., | 03000 0.2812 05302 |0.1637 | 6.5021x10~2 | 0-4071
MMCKDE .y | 0.1000 0.1875 04330 | 0.1091 | 33555102 | 0-7411
MICLy s 0.0080 0.0072 0.0848 | 0.0041 | 54365x10= | 0.9763
MCKDE gnoonsy | -0.0097 | 8.003 28289 | 46596 | g9928x102 | 1.0029
MMCKDE goeoes | -0.2085 | 7.7639 27863 | 45204 | 57629x10~ | 1.8675
MICIz gacoas) 02313 6.9157 2.6207 | 4.0265 | 50502x10~ | 1.9995
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Graphical densities display
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Figure la: Graphical density estimates for Race datausing the fixed H approach.
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Figure 1b: Graphical density estimates for Race data using the MCKDE approach.
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Figure 1c: Graphical density estimates for Race data using the MMCEKDE approach.
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Figure 1d: Graphical density estimates for Race data using the MICIgapproach.

Fixed H Income

Figure 2a: Graphical density estimates for Income using the fixed H approach.

MCKDE Income o

Figure 2b: Graphical density estimates for Income using the MCEDE approach.
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MMCKDE Income

Figure 2c: Graphical density estimates for Income using the MMCEKDE approach.
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Figure 2d: Graphical density estimates for Income using the MICIzapproach.
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