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A new affine invariant test for multivariate normality based
on beta probability plots
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A new technique for assessing multivariate normality (MVN) is proposed in this work based
on a beta transform of the multivariate normal data set. The statistic is the sum of interpoint
squared distances between an ordered set of the transformed observations and the set of the beta
population pth quantiles. We showed that the statistic is affine invariant. The critical values
of the test were evaluated for different sample sizes and different random vector dimensions
through extensive simulations. For some selected sample sizes and random vector dimensions,
the empirical type-I-error rates and powers of the proposed test were compared with those of
other already in use tests for MVN. The results showed that the test is a good and competitive
tool for testing MVN.
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1. Introduction

Let x = (21, 29,...,24)7 € R? be a d-component random vector whose sample realizations
give rise to a multivariate data set. It is described completely by a probability law, which
like in the univariate case, is either discrete or continuous. The basic central probability
law (distribution) and building block in classical multivariate analysis is the multivariate
normal distribution, Muirhead (2005, p. 1). This is because most often, most multivariate
observations are at least approximately normally distributed. Also and more importantly,
most techniques for multivariate analysis such as MANOVA, MANCOVA, multivariate
regression analysis, canonical correlation, maximum likelihood discriminant analysis and
maximum likelihood factor analysis depend on the distributional assumption of multivariate
normality (MVN). It is therefore a matter of utmost importance to conduct a test of fit
to a multivariate normal distribution on a multivariate data set prior to any meaningful
statistical analysis especially when any of the techniques whose applicability depends on
MVN is required to be employed.

Suppose the d-component random vector x € R? is defined by a distribution function
F(x) . Let Fy(x) be a distribution function of a multivariate normal population having
mean vector pu and covariance matrix 3. Suppose a sample of n independent and identically
distributed (iid) observation vectors x1, X2, ..., Xp is available from an unknown continuous
distribution function F'(x). Fan (1997) states the problem of assessing MVN of the random
vector x on the basis of the iid observation vectors as that of testing the goodness-of-fit
hypothesis:

Hy : F(x) = Fy(x)against H; : F'(x) # Fp(x). (1)

Weiss (1958) proposed a test of fit for multivariate distributions based on stochastic con-
vergence of an empirical function derived from the sample data to a weighted integral of
the true multivariate probability density function. Since then, several formal techniques for
assessing MVN have been proposed. These tests are based on diverse characterizations of
the multivariate normal distribution such as measures of skewness and kurtosis, measures
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of entropy, empirical distribution function, empirical characteristic function and various
transformation properties. Some of the techniques include Mardia (1970, 1974), Malkovich
and Afifi (1973), Hawkins (1981), Royston (1983), Baringhaus and Henze (1988), Henze
and Zirkler (1990), Cox and Wermuth (1994), Liang et al (2009), Cardoso de Oliveira and
Ferreira (2010). Apart from these and many other formal techniques for assessing MVN,
procedures that are based on graphical plots have also been proposed, for instance Healy
(1968), Small (1978) and Scrucca (2000).

Suppose X1, X2, ..., Xp is a random sample of n observation vectors from Ny(u, X). Let X
and S be estimators of p and ¥ respectively. It is known that the squared radii

yj = (x5 —%)"S7H(xj — X). (2)

Healy (1968) obtained a graphical plot of the ordered squared radii, ygid = 1L,2,..5n
versus the approximate expected order statistics from the chi-squared distribution with d
degrees of freedom. As a means of assessing MVN of the data set, he stated that the MVN
of the data set may be rejected if the plot fails to be approximately linear. He also suggested
the use of square root or cube root normalizing transformations of y;), that is u¢;y = /¥
or v(;) = 3/¥3)- T he transform w;y or v(;) can then be plotted against the expected normal
order statistics which is obtained as the inverse distribution function F~!(p;) of the normal
distribution with p; = n~1(j — 0.5). Again, MVN of the data set is rejected if the graphical
plot fails to be approximately linear. According to him, the transformed normal plot may
be expected to work better than the chi-square plot as d increases.

Under the null hypothesis of multivariate normality, Gnanadesikan and Kettenring (1972)
transformed y; in (2) as

zi=n(n—1)"2y;5=1,2,..,n (3)

Based on a theorem in Wilks (1962, p. 562), they stated that the zjs are independent
observations from beta distribution of the first kind with parameters a = d/2 and b =
(n —d —1)/2, where n and d have their usual meanings. Using the z; transform, Small
(1978) proposed that the MVN of a data set may be rejected if the graphical plot of
the order statistics z(;) against the approximate expected order statistics ¢;;j = 1,2,...,n
from B(a, b), with plotting points P;(z(;), ¢j), is not approximately linear. The approximate
expected order statistics z;, based on Blom (1958), is obtained according to Small (1978)

and Hanusz and Tarasinska (2012) by

cj Za—l(l o Z)b—l ] —
F(c;) = dz = L =12, 4
(c) /0 Bla,b)  n-—a-p+1 T ool )

where o = (a — 1)/2a and § = (b — 1)/2b. This gives ¢; in (4) as the inverse distribution
function F~!(p;) of the beta distribution with parameters a and b, where p; = [b(2aj — a +
1)]/(2abn 4+ a +b).

Using graphical plots to ascertain the MVN of a data set is highly subjective. As a result,
a number of formal goodness-of-fit tests for MVN have been proposed from the graphical
plots. One of such goodness-of-fit tests is by Hanusz and Tarasinska (2012). They obtained
two geometric statistics as new measures for MVN test. The statistics were obtained as
the sum of the areas formed between the plotting points and the zero intercept linear line
z = c. In the first statistic, the plotting points are made up of the order statistics of the
beta transform observations in (3) and their corresponding expected beta order statistics. In
the second statistic, the plotting points are the ordered standardized principal component
transformations which in each principal component are standard normally distributed and
their corresponding expected standard normal order statistics. The statistic here is obtained
as the sum of all the areas in all the d principal components. They concluded that large
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value of the statistics will lead to rejection of MVN of the data set under investigation and
obtained empirical critical values under the null hypothesis of multivariate normality for
the two statistics.

A very important drawback of these statistics is on their applicability. Some of the shapes
whose areas are required in the statistic may be irregular and as such may not have easy-
to-compute areas except with the use of special computer programs, as alluded to by the
authors. Motivated by this drawback, Madukaife and Okafor (2017) converted the sum
of areas of principal component observations of Hanusz and Tarasinska (2012) to sum of
squared differences between jth observed order statistic in ith principal component z;;) and
jth expected standard normal order statistic ¢; and summed them across the d principal
components. Also, Madukaife and Okafor (2018) instead of converting the sum of areas
obtained from beta transforms according to Hanusz and Tarasinska (2012), obtained the
sum of squared differences between the chi squared order statistics according to the chi
square transforms in (2) and their corresponding expected chi squared order statistics c;.
They stated that large values of the statistics lead to the rejection of the hypothesis of
MVN of data sets and obtained the empirical critical values of the statistics at different
sample sizes and different variable dimensions. They also showed that the statistics are at
least as powerful as Hanusz and Tarasinska (2012) and recommended them in favour of the
later due to their computational ease. Due to the exactness of the beta transform in (3),
one would expect an adaptation of Madukaife and Okafor (2018) on beta transforms to give
a better test. This is the main thrust of this work. The test is proposed in section 2 while
the critical values of the proposed test are given in section 3. Section 4 gives the power
performance of the test in comparison with powers of some other tests for MVN. Real life
examples are given in section 5 while section 6 concludes the work.

2. The proposed test

Let z(1y, 2(2); -+ 2(n) from an unknown distribution F'(z) arising from the z-transform of
n independent multivariate data set in (3) be plotted against a set of n expected order
statistics ¢; from a known distribution Fy(z) to form a Q-Q plot. Also, let the set of n
expected order statistics ¢; be plotted against itself, forming a Q-Q line z = c. Both plots
are on the same axes. Then the size of the area of each enclosed shape is proportional to
the distance of the plotted point away from the Q-Q line.

A measure of the distance between an observed jth point P;(z(;),c;) and each of its
orthogonal projections P}(2(j), ¢j) and P;”(2(;), ¢;) on the straight line z = ¢ can be obtained
as |2(j)—c;l. It is therefore easy to see that the area of the right-angled triangle formed by the
observed point on the straight line z = ¢ is 1/2(z(j) —¢;)?. This implies that A;= (z(;) —¢;)?
is an appropriate measure of the area of a square formed by the observed point. Hence,
D, = E?Zl(z(j) — ¢j)? which is the sum of the areas of all the squares formed by all the
observed points is similar to the sum of the areas used by Hanusz and Tarasinska (2012)
as a measure of a test of multinormality.

From the foregoing, it is proposed here to take the squared differences between the jth
order statistic z(;) according to (3) and the jth expected beta order statistic c; according
to (4) for each j(j = 1,2,...,n) and obtain the sum of the squared differences as a test
statistic for assessing MVN of the data set.

n

Dn = Z(Z(J) — Cj)2 (5)

j=1

The statistic will reject MVN of the data set for large values of the statistic. This is because
under the null hypothesis of multivariate normality of the data, the Q-Q plot for the beta
distribution will be equivalent to that of multinormality (see Gnanadesikan and Kettenring
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(1972); Small (1978)). Under this condition, observed values z(;)s will tend to the c;s such
that A; s will tend to zero and so D,, will tend to zero. The proposed statistic is less
cumbersome and easier to apply than the Hanusz and Tarasinska (2012) statistic.

Our proposed statistic, D,, is also affine invariant because it is based on the Mahalanobis
squared distance (transformation of the original x to y) and any test statistic which is based
on the Mahalanobis squared distance would be found to be affine invariant, see Madukaife
and Okafor (2018) and Henze (2002).

3. Critical values of the proposed test

The empirical critical values of the test for different combinations of the sample size n and
the number of variables d are evaluated through extensive simulation studies. Precisely,
the critical values at 0.5, 1, 2.5, 5 and 10 percent levels of significance are evaluated for
n = 10(2)20(5)50(10)100(50)300(100)500 and d = 2, 3, 4 and 5. We generated N = 100,000
samples for n < 100; N = 80,000 samples for 100 < n < 300 and N = 50,000 samples for
n > 300 from a Ng(0,I); d = 2,3,4,5. From each sample, we obtained the beta transform
of the observation vectors as given in (3) and ordered the set of the transforms. We also
obtained the corresponding expected beta order statistics as the pth quantiles of the beta
distribution, with p given as the result in (4) for each j and calculated the sum of squared
differences between each corresponding observed and expected order statistics. From the N
sum of squared differences associated with each combination of n and d, we calculated the
a-level critical value of the test for the n and d as the 100(1 — «) percentile of the N sum
of squared differences. These percentile values are presented in Table 1. Based on this, we
wish to reject multivariate normality of a data set with sample size n and dimension d if
the calculated value of the proposed test statistic at level of significance « is greater than
the corresponding empirical critical value.

4. Empirical power studies

In this section, we shall compare the power of the proposed test with the powers of some
other time-honoured and highly regarded tests for MVN. The competing tests used here
include the Mardia’s skewness (MS) and kurtosis (MK) tests for MVN, Mardia (1970, 1974);
Henze and Zirkler test for MVN, Henze and Zirkler (1990); Singh’s classical test for MVN,
Singh (1993); the combination test for MVN, Hwu et al (2002) and Madukaife and Okafor
(T) and (G) tests for MVN, Madukaife and Okafor (2017, 2018). These tests are chosen
from among all the numerous tests for multinormality because Mardia’s tests (MS) and
(MK) as well as the Henze and Zirkler test are among the most powerful tests for MVN in
the literature and also among the most used (Mecklin and Mundfrom 2004). Again, Singh
(1993) test is based on the same beta transforms of multivariate data and it has a good
power. Also, the combination test of Hwu et al (2002) promised to have a highly competitive
power when compared to other tests that preceded it. Also, Madukaife and Okafor (2017,
2018) tests have the same principle with the D,, test. The only difference between them is
in the type of transformation. In this work, the competing tests shall be denoted by MS,
MK, HZ, Scl, CT, T and G respectively while our proposed test shall be denoted by PT.
Since the null distribution of some of the test statistics for MVN is intractable, we used a
Monte Carlo simulation study via empirical critical values throughout this study to ensure
uniformity of power comparison of the tests. In the study, 10,000 data sets in each of the
combinations of sample size n = 10, 20, 30, 50, 100 and dimension d = 2, 5 were generated
from 11 different multivariate distributions, ranging from the standard multivariate normal
to various departures from normality. For each of the combinations of n and d, we calculated
the values of each of the eight statistics being compared in each of the 10,000 simulated
samples and obtained the power of each test statistic as the percentage of the 10,000 samples
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Table 1. Empirical critical values of the beta-probability plot sum of squared differences from the multivariate normal

distribution
n d=2 d=3

0.005 0.01 0.025 0.05 0.10 0.005 0.01 0.025 0.05 0.10

10 0.1952 0.1680 0.1289 0.0999 0.0729 0.1929 0.1617 0.1274 0.1023 0.0789
12 0.1750 0.1464 0.1086 0.0833 0.0594 0.1669 0.1432 0.1100 0.0874 0.0665
14 0.1511 0.1257 0.0926 0.0689 0.0487 0.1447 0.1231 0.0948 0.0749 0.0562
16 0.1331 0.1087 0.0781 0.0580 0.0408 0.1301 0.1099 0.0833 0.0645 0.0477
18 0.1152 0.0946 0.0681 0.0499 0.0345 0.1176 0.0978 0.0738 0.0565 0.0411
20 0.1031 0.0834 0.0595 0.0430 0.0295 0.1058 0.0869 0.0652 0.0495 0.0361
25 0.0764 0.0619 0.0433 0.0310 0.0215 0.0807 0.0658 0.0477 0.0360 0.0263
30 0.0588 0.0477 0.0329 0.0237 0.0164 0.0644 0.0518 0.0372 0.0279 0.0201
35  0.0464 0.0368 0.0255 0.0183 0.0128 0.0510 0.0415 0.0294 0.0220 0.0160
40 0.0382 0.0307 0.0212 0.0150 0.0104 0.0424 0.0341 0.0243 0.0180 0.0129
45 0.0318 0.0252 0.0174 0.0126 0.0087 0.0366 0.0291 0.0203 0.0150 0.0108
50 0.0273 0.0215 0.0147 0.0105 0.0074 0.0302 0.0243 0.0172 0.0128 0.0092
60 0.0199 0.0159 0.0109 0.0079 0.0055 0.0227 0.0182 0.0128 0.0096 0.0069
70 0.0157 0.0122 0.0085 0.0061 0.0043 0.0178 0.0139 0.0098 0.0073 0.0053
80 0.0122 0.0095 0.0066 0.0048 0.0034 0.0142 0.0114 0.0080 0.0059 0.0043
90 0.0101 0.0080 0.0056 0.0040 0.0028 0.0115 0.0092 0.0064 0.0048 0.0035
100 0.0085 0.0067 0.0046 0.0034 0.0024 0.0098 0.0077 0.0054 0.0040 0.0029
150 0.0043 0.0033 0.0022 0.0016 0.0012 0.0053 0.0042 0.0029 0.0022 0.0015
200 0.0024 0.0019 0.0013 0.0010 0.0007 0.0028 0.0022 0.0016 0.0012 0.0009
250 0.0016 0.0013 0.0009 0.0007 0.0005 0.0021 0.0017 0.0012 0.0009 0.0006
300 0.0012 0.0009 0.0006 0.0005 0.0004 0.0013 0.0011 0.0008 0.0006 0.0004
400 0.0007 0.0005 0.0004 0.0003 0.0002 0.0008 0.0006 0.0004 0.0003 0.0003
500 0.0005 0.0004 0.0003 0.0002 0.0001 0.0005 0.0004 0.0003 0.0002 0.0002

that is rejected by the statistic at 5 percent level of significance.

The first distribution we considered in this power comparison was the standard multivari-
ate normal distribution. Since the null hypothesis is true in this case, the null hypothesis
of multivariate normality should be rejected by each of the competing test statistics at
about 5 percent level of significance. That is, each test should give a power of 5 percent.
Mecklin and Mundfrom (2005) have stated that any of the statistics that gives power far
above the 5 percent level would probably indicate a problem of high Type I error rate. The
result of this study is presented in Table 2. From the result, it is seen that the MS test,
the T and G tests and the PT test maintained approximately the same 5 percent error
rate in all the considered combinations of sample size and dimension more than the rest
of the statistics under consideration. Also, the variability in sample size n as well as in
variable dimension d as measured by the standard deviation of the 10 observations (type
1 error rates) for each statistic shows that the proposed test is least affected, with respect
to type 1 error rate, by changes in the sample size and variable dimension among all the 8
tests considered. This can be seen from its standard deviation spp = 0.1350 which is the
least. The standard deviation of the observations for each of the other tests is obtained as
sys = 0.2914; sy = 0.3048; sz = 1.3408; s = 0.3917; sgq = 0.2700; s = 0.1958 and
sg = 0.2530. Based on the standard deviations, the PT is least affected, followed by the T
and G tests respectively while the HZ test is most affected with highest standard deviation
value. Again, HZ test maintained type 1 error rates much lower than the nominal rate of
5 percent with a progressive increase towards b percent as the sample size n and variable
dimension d increased.

There are several multivariate distributions from where multivariate data sets may be
obtained other than the multinormal distribution. Some of these distributions are symmetric
while some others are skewed. In this work, we categorized all the alternative multivariate
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Table 1 continues
n d=14 d=25
0.005 0.01 0.025 0.05 0.10 0.005 0.01 0.025 0.05 0.10

10 0.1925 0.1639 0.1293 0.1045 0.0816 0.1885 0.1614 0.1277 0.1040 0.0813
12 0.1664 0.1412 0.1111 0.0900 0.0703 0.1668 0.1435 0.1129 0.0917 0.0723
14 0.1443 0.1241 0.0979 0.0787 0.0606 0.1443 0.1244 0.0992 0.0809 0.0635
16  0.1304 0.1116 0.0870 0.0694 0.0533 0.1304 0.1121 0.0884 0.0719 0.0563
18 0.1174 0.0995 0.0764 0.0605 0.0461 0.1186 0.1024 0.0802 0.0643 0.0500
20 0.1056 0.0889 0.0678 0.0531 0.0404 0.1081 0.0913 0.0709 0.0571 0.0440
25 0.0836 0.0697 0.0523 0.0407 0.0301 0.0849 0.0723 0.0556 0.0439 0.0335
30 0.0666 0.0556 0.0408 0.0314 0.0234 0.0678 0.0572 0.0432 0.0339 0.0259
35 0.0553 0.0453 0.0330 0.0251 0.0187 0.0569 0.0473 0.0356 0.0279 0.0210
40  0.0451 0.0368 0.0271 0.0206 0.0151 0.0480 0.0391 0.0292 0.0227 0.0172
45 0.0379 0.0307 0.0224 0.0170 0.0127 0.0404 0.0329 0.0245 0.0191 0.0143
50 0.0321 0.0265 0.0191 0.0146 0.0108 0.0347 0.0285 0.0209 0.0163 0.0123
60 0.0241 0.0194 0.0143 0.0109 0.0080 0.0258 0.0213 0.0158 0.0122 0.0092
70 0.0190 0.0153 0.0111 0.0084 0.0063 0.0208 0.0170 0.0123 0.0095 0.0072
80 0.0155 0.0125 0.0089 0.0067 0.0050 0.0164 0.0134 0.0099 0.0076 0.0058
90 0.0126 0.0101 0.0073 0.0056 0.0041 0.0138 0.0111 0.0081 0.0063 0.0048
100 0.0106 0.0085 0.0061 0.0047 0.0035 0.0117 0.0094 0.0068 0.0053 0.0040
150 0.0061 0.0049 0.0036 0.0027 0.0019 0.0066 0.0054 0.0040 0.0030 0.0022
200 0.0046 0.0037 0.0028 0.0023 0.0018 0.0050 0.0042 0.0033 0.0027 0.0021
250 0.0024 0.0019 0.0014 0.0011 0.0008 0.0027 0.0023 0.0016 0.0012 0.0009
300 0.0015 0.0012 0.0009 0.0007 0.0005 0.0016 0.0013 0.0010 0.0008 0.0006
400 0.0009 0.0007 0.0005 0.0004 0.0003 0.0009 0.0008 0.0006 0.0004 0.0003
500 0.0006 0.0005 0.0003 0.0003 0.0002 0.0006 0.0005 0.0004 0.0003 0.0002

Table 2. Empirical type-I-error rates against multivariate normal distribution, nominal a = 5 percent
Test n=10 n=20 n =30 n =50 n =100
d=2 d=5 d=2 d=5 d=2 d=5 d=2 d=5 d=2 d=5

MS 4.8 4.9 4.6 4.9 5.0 4.8 5.2 5.3 5.4 4.5
MK 4.9 4.7 4.8 5.2 4.8 4.9 5.1 5.4 4.3 5.1
HZ 2.3 0.7 4.0 2.5 4.5 3.7 4.6 4.4 4.8 4.5
cT 9.7 9.9 9.2 9.5 9.0 9.7 8.7 9.3 9.7 9.0
Scl 4.6 4.9 4.8 5.2 5.0 4.8 4.3 5.1 5.1 5.0
T 4.9 5.2 5.2 5.4 5.2 4.8 4.9 4.9 5.1 4.9
G 4.8 5.4 5.3 4.7 5.1 4.7 5.1 5.1 4.8 4.8
PT 5.2 5.0 5.1 5.2 4.9 5.2 4.9 4.9 5.2 5.0

distributions considered into two, according to their symmetry. Hence, we have comparison
of the test statistics for symmetric distributions as group 1 and comparison of the test
statistics for skewed distributions as group 2. The symmetric distributions considered in
group 1 include:

e The multivariate t distribution (MVt) with 2 degrees of freedom and identity ma-
trices.

e Product of uniform distribution (Unif(0,1)?) in the interval (0,1), where d = 2, 5;

e Product of beta distribution (Beta(2,2)?) with parameters (2,2), where d = 2,5
and

e Product of the arcsine distribution (Arcsine?), where d = 2, 5.

The mixture of two multinormal distributions in the form «a[f;(x)] + (1 — @) fa(x); 0 = 0.4
with arbitrary mean vectors py = (0,0)7, uz = (=1, —1)T for d = 2 and pu3 = (0,0,0,0,0)7,
pe = (2,1,1,2,1)T for d = 5 and arbitrarily chosen identity covariance matrices.

Also, the skewed distributions considered in group 2 include:

e Product of beta distribution (Beta(1,5)?) with parameters (1,5), where d = 2, 5;
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e Product of the standard exponential distribution (Ezp(1)?), where d = 2, 5;

e Multivariate generalized extreme value distribution (Mwvgevd) with parameter 0.72

e Product of beta with parameters (1,5) and the standard exponential distributions
and

e Product of standard normal and standard exponential distributions.

The results are presented in Tables 3, 4, 5 and 6.

Table 3. Power comparison of tests for multivariate normality for various multivariate symmetric distributions at
a =5 percent, d =2

n  Distributions MS MK HZ CT Scl T G PT

10 MVNMIX 3.8 4.9 1.8 8.9 6.1 4.8 7.3 9.0
20 MVNMIX 4.5 5.0 3.6 8.6 5.2 4.5 4.7 10.6
30 MVNMIX 3.6 4.5 4.1 7.7 5.7 4.2 5.2 13.4
50  MVNMIX 3.8 5.3 4.9 6.9 6.1 4.3 5.1 17.4
100 MVNMIX 5.1 4.2 5.4 7.2 5.6 8.9 4.9 29.2
10 MVt 43.0 370 336 459 165 429 9.3 36.5

20 MVt 71.0 729 688 748 549 729 663  69.1
30 MVt 83.1 887 856 87.8 73.6 86.8 857 86.5
50 MVt 92.2 982 973 974 914 97.5 97.6  98.0
100 MVt 97.6  100.0 100.0 100.0 99.4 99.9 100.0 100.0
10 Beta(2,2)*> 18 69 1.3 89 64 32 102 103
20 Beta(2,2)2 07 139 15 91 73 20 162 161
30 Beta(2,2)2 04 240 73 98 92 1.8 204 255
50 Beta(2,2)2 02 462 141 131 165 24 336 475
100 Beta(2,2)> 0.1 835 375 258 388 9.8 69.7 87.2
10 Arcsine? 17 206 44 131 119 72 251 186
20 Arcsine? 0.2 661 420 265 220 133 61.6 59.1
30 Arcsine? 00 915 820 412 406 214 849 883
50  Arcsine? 00 998 995 684 76.7 348 99.0 99.7
2

100  Arcsine 0.0 100.0 100.0 96.6 99.7 72.7 100.0 100.0

10 Unif(0,1)2 1.4 109 1.7 133 87 34 16.0 13.6
20  Unif(0,1)? 0.2 352 9.2 159 135 3.7 346 341
30  Unif(0,1)? 0.2 602 273 233 223 6.2 528 602
50 Unif(0,1)? 0.0 916 61.7 402 458 172 82.0 90.1
100 Unif(0,1)? 0.0 1000 973 753 89.6 39.2 99.8 100.0

The power performance of a test for MVN which is the ability of the test to reject multi-
variate normality when the distribution is actually non multinormal, when compared with
other alternative tests, is an accurate means of determining the relative goodness of the test.
In this regard, from Tables 3 and 4, it is observed that the proposed test (PT) generally
out-performed the Mardias skewness test in all the alternative distributions considered.
Also, it out-performed the very highly regarded Henze-Zirkler test under sample size of
10 in almost all the distributions considered while it remained very competitive with the
Henze-Zirkler test in the remaining sample sizes considered with outright superior perfor-
mance in the multivariate t-distribution and the reverse in the arcsine distribution. When
compared with combination test of Hwu et al (2002) and Singhs test, it showed a promis-
ing result with outright superior performance in almost all the symmetric distributions
considered at large sample sizes of n > 30 except in the mixture of multivariate normal
distributions (MVNMIX). The proposed test is however observed to be generally inferior to
the Mardias kurtosis test for sample sizes between 10 and 50, except under the multivariate
t-distribution. For the sample size of n = 100, the power of the proposed test was seen to be
at par with the powers of any of the Mardia’s kurtosis and the Henze-Zirkler tests in almost
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Table 4. Power comparison of tests for multivariate normality for various multivariate symmetric distributions at
a =5 percent, d =5

n  Distributions MS MK HZ CcT Scl T G PT

10 MVNMIX 4.7 4.7 09 11.1 4.7 3.4 6.0 3.2
20 MVNMIX 3.5 5.0 3.0 9.9 4.8 4.2 7.0 3.9
30 MVNMIX 3.0 6.4 6.6 7.9 4.3 6.3 6.9 3.8
50 MVNMIX 4.7 5.4 8.2 7.6 5.6 7.0 7.0 4.2
100 MVNMIX 3.3 92 229 8.0 58 15,7 6.1 5.2
10 MVt 46.5 340 177 485 39 564 0.3 408
20 MVt 93.3 936 842 940 439 88.0 53.3 946
30 MVt 98.7 99.3 980 987 835 971 952 994
50 MVt 100.0 100.0 100.0 99.9 983 99.9 100.0 100.0
100 MVt 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10  Beta(2,2)° 2.6 5.5 0.5 7.0 6.1 3.3 8.0 3.1
20  Beta(2,2)° 06 124 2.1 8.5 7.0 2.7 176 3.7
30 Beta(2,2)° 03 240 43 106 74 24 294 7.1
50 Beta(2,2)° 0.1 489 10.8 151 106 1.6 504 18.6
100 Beta(2,2)® 0.1 902 316 274 228 1.6 84.7 628
10  Arcsine® 1.5 7.0 1.3 4.1 7.6 3.5 109 24
20  Arcsine® 0.1 452 136 7.7 9.7 3.2 471  17.0
30 Arcsine® 0.0 839 472 119 121 31 823 50.1
50  Arcsine® 0.0 99.8 957 20.7 244 45 995 95.6
100 Arcsine® 0.0 100.0 100.0 480 744 152 100.0 100.0
10 Unif(0,1)% 1.6 6.1 0.8 5.1 6.7 3.0 9.2 2.7
20  Unif(0,1)° 0.2 258 4.2 8.5 8.0 2.7 316 82
30  Unif(0,1)° 0.0 536 123 128 10.1 2.1 568 208
50  Unif(0,1)° 0.0 900 41.8 21.3 179 23 886 59.9
100 Unif(0,1)° 0.0 100.0 93.2 433 50.7 51 100.0 99.2

all the symmetric alternative distributions considered. When compared with the two similar
tests that are based on probability plots according to Madukaife and Okafor (2017, 2018),
the proposed PT test performed reasonably well. Under the variable dimension d = 2, the
proposed test remained superior, in terms of power performance, to both the T and G tests
in all the symmetric distributions considered. Under d = 5 however, its power appeared to
be inferior to that of the T test at large samples in most of the symmetric distributions
considered except in MVt where the PT test performed better than the two similar tests,
T and G. Based on these, the proposed test is therefore recommended as a good technique
for carrying out test for MVN of data sets from symmetric alternative distributions.

From Tables 5 and 6, we observed the proposed test to be slightly inferior to the Mardias
skewness (MS) test, Henze-Zirkler test at large samples, the combination test and the
Madukaife and Okafor T test in most of the skewed alternative distributions considered.
However, it is seen to be generally more powerful than the Mardias kurtosis (MK) test at
all the sample sizes, the Henze-Zirkler test at the sample size of 10, the Singhs Scl test at
all the sample sizes and Madukaife and Okafor G test at almost all the sample sizes. Also,
there is no observed difference between the performance of the proposed test in d = 2 and
d = 5. Even in those cases where the power of the proposed test is observed to be inferior,
the proposed test still shows itself to be competitive especially at sample size of 100. It can
therefore be recommended as a good technique for assessing MVN of data sets from skewed
distributions.
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Table 5. Power comparison of tests for multivariate normality for various multivariate skewed distributions at « = 5
percent, d = 2

n  Distributions MS MK HZ CcT Scl T G PT
10 Beta(l, 5)2 19.2 11.3 17.5 34.2 134 226 4.9 17.6
20  Beta(1,5)? 49.0 19.7 589 53.8 26.1 51.7 195 29.1
30 Beta(1,5)? 749 263 834 775 337 714 29.7 374
50 Beta(1,5)? 96.6 355 984 96.8 456 87.2 435 495
100  Beta(1,5)? 100.0 56.8 100.0 100.0 66.2 983 681 71.0
10 Emp(1)2 36.7 225 34.1 40.6 22.1 41.9 7.5 32.0
20  Eap(1)? 784 46.8 839 81.0 493 T77.6 445 58.0
30  Eap(1)? 95.0 63.2 97.0 958 66.6 90.8 66.7 72.6
50 Eap(1)? 99.9 824 100.0 100.0 &83.6 98.0 86.5 88.7
100 Exp(1)? 100.0 98.0 100.0 100.0 97.8 100.0 98.7 98.9
10  Mwvgevd 14.8 10.3 104 185 85 16.7 4.0 142
20  Muwogevd 34.0 220 304 375 221 338 204 29.7
30 Muwogevd 52.2 32,5 46.1 53.8 332 486 32.7 404
50 Muwgevd 76.2 473 68.8 784 484 69.8 51.1 56.3
100 Mwgevd 98.3 745 93.1 982 715 945 774 79.6
10 Beta(1,5)FExzp(1) 29.3 16.5 24.7 33.1 17.2 4238 5.2 249
20 Beta(1,5)Exzp(1) 659 33.8 732 69.3 39.1 86.3 32.0 44.2
30 Beta(1,5)Exzp(1) 89.1 458 92.6 90.1 51.8 98.2 48.8 58.1
50 Beta(1,5)Exzp(1) 994 64.4 99.7 99.5 69.6 100.0 98.7 74.7
100 Beta(1,5)Exp(1) 100.0 87.5 100.0 100.0 90.8 100.0 100.0 93.9
10 ]\7(07 I)Exp(l) 204 126 14.5 37.0 9.5 20.0 4.0 18.2
20 ]\7(07 I)Exp(l) 46.1 24.2 46.1 51.1 25.7 43.7 22.7  32.9
30 N(0,1)Ezp(1) 68.0 345 683 705 36.1 61.7 358 43.2
50 N(O, 1)Exp(1) 92.2 49.3 924 929 496 &81.9 54.2  59.0
100 N(0,1)Exzp(1) 100.0 76.1 999 999 735 963 79.6 82.6

5. Real life examples

In this section, seven different cases were presented where the proposed test was applied
to real-life data, generated from real-life experiments or investigations. The generated data
sets are described as follows.

Nwagbata (2016) obtained two samples of 250 each for male and female babies delivered
in a private hospital in Nigeria over a period of 5 years. Three basic measurements were
taken from each of them at birth to represent their features at birth. The measurements,
head circumference, body height and body weight, form two data sets from trivariate dis-
tributions which were hypothesized to be multinormal.

A combination of the two trivariate data sets above to have a 500 trivariate data points
from a distribution which was hypothesized to be multinormal.

Fisher (1936)’s famous Iris-Setosa data; Iris-Versicolor data; and Iris-Virginica data, each
data set with measurements, sepal length, sepal width, petal length, and petal width (all in
cm) each of which was hypothesized to have come from a tetravariate normal population.

A combination of the three sets of tetravariate data from the three classes of Iris plant
in Fisher (1936), which gives 150 tetravariate data points, hypothesized to have come from
a tetravariate normal population.

The real-life data sets were tested for multivariate normality at 5 percent level of signif-
icance using our proposed statistic in comparison with the Mardias skewness and kurtosis
tests, the Henze-Zirkler test, the Singh’s classical test, the combination test, the T and
G tests. The result is presented in Table 7. The result shows that the proposed test, the
Mardia’s tests, the Singh’s test and the G test agreed in all the data sets considered. Also,
the proposed test agreed with the T test and the combination test in all the data sets
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Table 6. Power comparison of tests for multivariate normality for various multivariate skewed distributions at « = 5
percent, d =5

n  Distributions MS MK HZ CT Scl T G PT
10  Beta(1,5)° 11.9 62 49 142 44 147 28 93
20  Beta(1,5)® 419 186 43.6 429 13.0 329 1.5 275
30 Beta(1,5)® 721 286 763 720 212 499 81 388
50 Beta(l,5)° 98.2 445 981 98.0 364 736 296 54.7
100 Beta(1,5)® 100.0 72.4 100.0 100.0 60.7 944 66.6 80.0
10  Exp(1)® 254 134 121 265 43 345 1.0 189
20 Exp(1)5 82.3 575 789 84 317 712 10.1 65.5
30  Exp(1)° 98.0 787 974 982 595 87.8 52.8 85.0
50 Exp(1)5 100.0 954 100.0 100.0 85.8 98.0 90.4 96.8
100 Ezp(1)5 100.0 100.0 100.0 100.0 99.1 100.0 99.9 99.9
10  Muvgevd 1.1 72 23 145 42 173 28 87
20 Mugevd 371 236 197 388 112 397 2.0 30.0
30  Muvgevd 61.0 40.1 368 62.7 246 580 14.6 47.2
50 Mugevd 89.3 64.6 66.4 90.3 449 827 488 69.5
100 Mwvgevd 99.9 909 957 99.3 744 98.7 86.4 91.9
10  Beta(1,5)?Exp(1)® 186 93 7.9 213 43 354 21 139
20 Beta(1,5)%FExp(1)®  70.0 420 66.8 71.1 239 789 3.0 46.6
30 Beta(1,5)?Ezp(1)>  93.7 635 93.0 93.7 466 948 256 67.3
50 Beta(1,5)%FExp(1)®  99.9 854 99.8 100.0 72.6 99.5 65.2 85.6
100 Beta(1,5)2FExp(1)® 100.0 99.2 100.0 100.0 955 100.0 95.0 98.4
10  N(0,1)3Ezp(1)? 106 67 26 132 44 143 26 89
20 N(0,1)3Exp(1)? 364 19.2 243 387 140 303 19 285
30  N(0,1)3Exp(1)? 60.2 33.5 47.1 63.1 266 44.1 14.7 43.7
50 N(0,1)3Exzp(1)? 91.8 549 822 91.0 46.0 655 43.1 63.2
100 N(0,1)3Ezp(1)? 100.0 834 99.7 100.0 73.7 90.1 794 86.7

considered except in features of male babies at birth where the proposed test failed to re-
ject MVN of the data which the T and CT tests both rejected. Again, the proposed test
is in agreement with the HZ test in all the data sets considered except in the features of
male babies at birth as well as in the Iris Setosa where the MVN was rejected by the HZ
test against the decision of non rejection given by the proposed test. Consequent upon the
outlined observations together with the computational ease of the proposed test, its use in

real life can be highly recommended.

Table 7. Result of the tests for multivariate normality conducted on some real-life data sets

Data n PT T G MS/MK Scl CcT HZ
Features of male

babies at birth 250 Do not Reject Donot Domnot Donot Reject Reject
Features of Female

babies at birth 250 Reject Reject Reject  Reject  Reject Reject Reject
Features of babies

at birth 500 Reject Reject Reject  Reject  Reject Reject Reject
Iris-Setosa 50 Donot Donot Donot Donot Donot Donot Reject
Iris-Versicolor 50 Donot Donot Donot Donot Donot Donot Do not
Iris-Virginica 50  Reject Reject Reject  Reject  Reject Reject Reject
Iris-Data 150 Reject Reject Reject Reject Reject Reject Reject
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6. Conclusion

Mecklin and Mundfrom (2004) in a review of tests for MVN have stated that no test is
universally the best. However, some tests have been observed to be generally weak in terms
of power performance. From the power comparisons carried out in this work, the proposed
test, no doubt, can be recommended for use as a good test for MVN. This is because it
has a strong control over type-lerror and it has a highly competitive power. However, what
may appear to be a disadvantage of the proposed test is that its exact null distribution
is unknown. Quite a number of other well recommended techniques also have unknown
distributions and this makes them applicable only with the use of empirical critical values.
This is the case with tests for MVN such as Hanusz and Tarasinska (2012), Hwu et al (2002),
Ahn (1992), Liang et al (2009) and Singh (1993). Since the class of tests proposed here looks
promising, further research should be done in the direction of the distribution of the test
statistic, if it exists, in order to obtain a fully parametric test. Also, the computed value of
the test statistic can be inflated with the presence of an outlier thereby leading to wrong
decision of rejection even when it is not supposed to be so. It is therefore recommended
that this proposed test be conducted along with a graphical probability plot to determine
the presence of an outlier. Finally, since the test is based on Q-Q plot which is not peculiar
to any distribution, it is recommended that the procedure be adapted for constructing
goodness-of-fit tests of other multivariate and univariate distributions.
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