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In this paper, we focused on Multivariate Generalised Autoregressive Conditional 
Heteroscedasticity models for volatility series using response vector of variances. The paper 
aimed at developing alternative multivariate GARCH models characterised by either 
autoregressive or moving average process. Isolated Multivariate Generalised Conditional 
Heteroscedasticity, ISO-MGARCH (p,0) models and Isolated Multivariate Generalised 
Conditional Heteroscedasticity, ISO-MGARCH(0, q) models are identified from MGARCH (p, 
q) model under specific conditions. To ascertain the models applicability, the isolated 
univariate and multivariate GARCH (2,0) models were fitted to volatility measures of Nigeria 
average, urban and rural consumer price indices from January 1995 to December 2019. The 
volatility series were subjected to autocorrelation and partial autocorrelation checks as 
applicable to stationary autoregressive moving average process, where single autoregressive 
and moving average models are identified under certain conditions. This justified the 
isolation of pure autoregressive and pure moving average MGARCH models. Akaike 
Information Criterion (AIC), Bayesian Information Criterion (BIC) and Schwarz’s 
Information criterion (SIC) compare the isolated multivariate GARCH models with the 
existing univariate GARCH models, and the results revealed the same comparative advantage 
in capturing volatility series. 
Keywords: MGARCH(p, q); ISO-MGARC(p, 0); ISO-MGARCH(0, q); volatility measures. 

1 Introduction 

Autoregressive Conditional Heteroscedasticity (ARCH) and Generalised 
Autoregressive Conditional Heteroscedasticity (GARCH) models have gained priority in the 
modelling of economic and financial time series. These models have been established and 
found useful in investigating volatility in dynamic series, Engle (1982). Multivariate ARCH 
and GARCH models are extension of the univariate ARCH and GARCH models. Bollerslev 
et al (1988) and Hansson and Hordahl (1998) developed Multivariate GARCH models and 
used it to investigate volatilities of asset in portfolio, risk management and asset allocation to 
finding and updating optimal hedging positions. In multivariate ARCH and GARCH models, 
each conditional variance or covariance is a function of its lagged error term, variance and 
that of the other predictor conditional variances and error components. Silvennoinen and 
Terܽ̈svirta (2009) proposed specifications of MGARCH models which included flexibility to 
represent the dynamics of the conditional variances and covariances. Given the increasing 
number of parameters in MARCH and MGARCH models, Silvennoinen and Terܽ̈svirta 
(2009) considered parsimonious model for relative easy estimation of parameters. Although 
parsimonious model is synonymous with few parameters, this kind of model may not be able 
to capture the relevant dynamics in the covariance structure. Also taken into consideration is 
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the feature of the positive definiteness of the covariance matrices. In this paper, we consider 
the response vector of variances a linear combinations of the lagged terms of the response 
and predictor variances and associated squared errors. The objectives of this work are to 
obtain the multivariate generalized conditional heteroscedasticity (MGARCH) model for 
volatility series and also identify alternative MGARCH models under certain conditions as 
applicable to autoregressive moving average models.  

2 Review of Models 

This section considers the review of the related multivariate autoregressive 
conditional heteroscedasticity model and generalised multivariate autoregressive conditional 
heteroscedasticity models.  
Given ௧ܷ = ( ଵܷ௧ , ଶܷ௧ , … , ܷ௧)ூ dimensional zero mean, serially uncorrelated process which 
may be the residual process of some dynamic model, represented in the form 

௧ܷ = ∑௧∣௧ିଵ

ଵ
ଶൗ ߳௧                                                                                                                                         (1) 

where, ߳௧  is the k-dimensional ݅݅݀ white noise, where ߳௧~݅݅݀(0,  ) ܽ݊݀ ∑௧∣௧ିଵis theܫ

conditional covariance matrix of ௧ܷ , given ௧ܷିଵ, ௧ܷିଶ, as usual ∑௧∣௧ିଵ

ଵ
ଶൗ  is the symmetric 

positive definite square root of ∑௧∣௧ିଵ. The representation of Multivariate ARCH (q) process 
is 

ܸ݁ܿℎ(∑௧∣௧ିଵ) = ߛ  + )ூܸ݁ܿℎ߁ ௧ܷିଵ ௧ܷିଵ
ூ ) + ⋯+ ܸ݁ܿℎ൫߁ ௧ܷି ௧ܷି

ூ ൯                                     (2) 

where, Vech denotes the half-vectorization operator which stacks the columns of a square 
matrix from the diagonal downwards in a vector, ߛ is a భమ(ାଵ) dimensional vector of 
constants and the ߁

are ቂଵ ݏ,
ଶ
݇(݇ + 1) × ଵ

ଶ
݇(݇ + 1)ቃ coefficients matrices. Borlerslev et al 

(1988) considered multivariate ARCH models of the form k=2 ARCH(1) process as 

ܸ݁ܿℎ ቂ
ଵଵ,௧∣௧ିଵߪ ଵଶ,௧∣௧ିଵߪ
ଶଵ,௧∣௧ିଵߪ ଶଶ,௧∣௧ିଵߪ

ቃ = 
ଵଵ,௧∣௧ିଵߪ
ଵଶ,௧∣௧ିଵߪ
ଶଶ,௧∣௧ିଵߪ

൩ = 
ଵߛ
ଶߛ
ଷߛ

൩ + 
ଵଵߛ ଵଶߛ ଵଷߛ
ଶଵߛ ଶଶߛ ଶଷߛ
ଷଵߛ ଷଶߛ ଷଷߛ

൩ 
ଵܷ,௧ିଵ
ଶ

ଵܷ,௧ିଵ ଶܷ,௧ିଵ

ଶܷ,௧ିଵ
ଶ

         (3) 

Equation 3 is a multivariate ARCH model for volatility series. In order to reduce the number 
of parameters in the above multivariate ARCH model for k=2 ARCH(1) model, Borllerslev et 
al. (1988) presented a more parsimonious model by considering multivariate diagonal ARCH 
process, where the parameter matrices are all pure diagonal. This is obtained as 


ଵଵ,௧∣௧ିଵߪ
ଵଶ,௧∣௧ିଵߪ
ଶଶ,௧∣௧ିଵߪ

൩ = 
ଵߛ
ଶߛ
ଷߛ

൩ + 
ଵଵߛ 0 0
0 ଶଶߛ 0
0 0 ଷଷߛ

൩ 
ଵܷ,௧ିଵ
ଶ

ଵܷ,௧ିଵ ଶܷ,௧ିଵ

ଶܷ,௧ିଵ
ଶ

                                                               (4) 

Equation (4) is a multivariate pure diagonal ARCH model, also called diagonal vector 
(DVEC) model, which reduces the number of parameters in the ARCH (1) model. 
Silvennoinen and Terܽ̈svirta (2009) defined a stochastic vector process (rt) with dimension 
kx1 such that ܧ(ݎ௧) = 0. rtis conditional heteroskedastic, 

௧ݎ = ௧ܪ
ଵ
ଶൗ ݊௧                                                                                                                                              (5) 
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where ܪ௧  is ݇ × ݇ conditional covariance matrix of ݎ௧ and ݊௧ is ݇ × 1 ݅݅݀ vector error process 
such that ܧ(݊௧݊௧ூ) = 0. This defines the standard multivariate GARCH framework, in which 
there is no linear dependence structure in ݎ௧ . The model precludes parametric formulation of 
the linear dependence of ܪ௧ . Bollerslev et al (1988) presented a straightforward Vector 
GARCH model as a generalisation of the univariate GARCH model. The model is written, 
thus 

ܸ݁ܿℎ(ܪ௧) = ܥ +  ܣܸ݁ܿℎ൫ݎ௧ିݎ௧ିூ ൯ + ܤܸ݁ܿℎ(ܪ௧ି)


ୀଵ



ୀଵ

                                                 (6) 

where, ܪ௧is the variance and covariance matrix with ݇ × ݇ dimension, C is an 
(ାଵ)

ଶ
,ݎݐܸܿ݁  ቂଵ ݁ݎܽ ܤ ݀݊ܽ ܣ ݀݊ܽ

ଶ
݇(݇ + 1) × ଵ

ଶ
݇(݇ + 1)ቃ parameter matrices. Similar to 

multivariate ARCH(1) model in equation (4), Bollerslev (1988) introduced Diagonal 
Vectorization (DVEC) model, where the parameter matrices ܣ ܽ݊݀ ܤ contain only principal 
diagonal elements, Luc et al (2006). The DVEC model has parsimonious advantage, since the 
off-diagonal coefficients are zeroed. A major drawback is that the response vector of 
variances is only dependent on its distributed lags and does not allow for a greater range of 
interactions with other lagged variances. The restricted version of the VEC model is the 
Baba-Engle-Kraft-Kroner (BEKK) defined in Engle and Kroner (1995). The conditional 
covariance matrices are positive definite by construction. The model has the form 

௧ܪ = ܥܥ ூ + ܣூ ܣ௧ିݎ + ܤூ ܤ௧ିܪ                                                                 (7)


ୀଵ



ୀଵ



ୀଵ



ୀଵ

 

where, ܣ ܤ, ݇ are ܥ ݀݊ܽ  × ݇ parameter matrices, and C is lower triangular matrix of 
constants. The BEKK model is covariance stationary if and only if the eigenvalues of  

ܣ ܣ⊗ + ܤ ܤ⊗  ℎܽݐ ݏݏ݈݁ ݏݑ݈ݑ݀݉ ݁ݒℎܽ݊ ݁݊                                      


ୀଵ



ୀଵ



ୀଵ



ୀଵ

 

where, ⊗ denotes the Kronecker product of two matrices, and are less than one in modulus. 
Engle and Kroner (1995) presented the Bivariate GARCH(1,1) model without diagonal 
restriction as 


ଵଵ,௧∣௧ିଵߪ
ଵଶ,௧∣௧ିଵߪ
ଶଶ,௧∣௧ିଵߪ

൩ = 
ଵߛ
ଶߛ
ଷߛ

൩ + 
ଵଵߛ ଵଶߛ ଵଷߛ
ଶଵߛ ଶଶߛ ଶଷߛ
ଷଵߛ ଷଶߛ ଷଷߛ

൩ 
ଵܷ,௧ିଵ
ଶ

ଵܷ,௧ିଵ ଶܷ,௧ିଵ

ଶܷ,௧ିଵ
ଶ

 + 
݃ଵଵ ݃ଵଶ ݃ଵଷ
݃ଶଵ ݃ଶଶ ݃ଶଷ
݃ଷଵ ݃ଷଶ ݃ଷଷ

൩ 
ଵଵ,௧ିଵ∣௧ିଶߪ
ଵଶ,௧ିଵ∣௧ିଶߪ
ଶଶ,௧ିଵ∣௧ିଶߪ

൩    (8) 

The above vectorization operator includes variances and covariances of the processes.  
Related to multivariate GARCH models also include Kawakatsu (2006), Engle et al. (1990), 
Sentana (1998), Van Der (2007), Vrantos et al. (2003), Lanne and Sarkkonen (2007), Usoro 
and John (2019) and Usoro et al. (2020). 

3 Methodology 

3.1 Volatility Measure 

If a process, say Yt  has an error term ߳௧  and its variance ߪ௧ଶ, then 
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߳௧ = ௧ݖ௧ߪ  => ௧ଶߪ =
߳௧ଶ

௧ଶݖ
                                                                                                                    (9)   

where,  ݖ௧~݅݅݀(0,1), ߪ௧ଶ is a measure of volatility, ߪ௧ଶ follows ARCH (q) process if is a linear 
combination of the lagged squared error terms ߳௧ିଵଶ , ߳௧ିଶଶ , … ߳௧ିଶ , and GARCH(p,q) process if 
is a linear combination ߪ௧ିଵଶ , ௧ିଶଶߪ , … ௧ିଶߪ,  ܽ݊݀ ߳௧ିଵଶ , ߳௧ିଶଶ , … ߳௧ିଶ , Engle et al (1993), Gujarati 
and Porter (2009).  

Also considered as an alternative measure of volatility is the square of the log return 
series of a process, say Yt. Gujarati and Porter (2009) also expressed volatility measure as 
follows, 
Given Yt as time series process, logYt as the logarithm of Yt,  
 
dlogYt= logYt - logYt-1                   (10) 
 
dlogYt is the return series.  Let dlog തܻ௧ be the mean of dlogYt. 
 
ܺ௧ଶ = (dlogY − dlog തܻ௧)ଶ                                                                                                                   (11) 
 
௧ܺ
ଶ is a measure of volatility. Equations (9) and (11) are measures of volatility. In this paper, 

we adopt equation (11) as an alternative approach to the measure of volatility devoid of 
simulation of ݖ௧~݅݅݀(0,1). Equation 9 is the measure of volatility obtained as the square of 
the error component divided by the square of the standard normal random variable whose 
values are simulated. In this work, we adopt the volatility measure as a square of the log 
return series of the original data without simulation, as shown in equation (11). This is 
proposed to succinctly reveal the behaviour of the volatility measure through autocorrelation 
and partial autocorrelation functions for the choice of alternative MGARCH models. 

3.2 Multivariate GARCH Models 

Bollerslev et al. (1988) presented vectorization operator whose parameter matrices are 
limited to only principal diagonal elements. The models do not allow a greater range of 
interactions between the distributed lags of the response and predictor vector of conditional 
variances. To avert the parameter restriction, we adopt Engle and Kroner (1995) to allow free 
interactions of response variances.  

Definition 

Let ܻ௧(ୀଵ,…,) be multiple time series processes with variances ߪ௧(ୀଵ,…,)
ଶ , squared error 

terms ߳௩௧(௩ୀଵ,…,)
ଶ  and constants ߤ(ୀଵ,…,). If ߪ௧ିଶ  and ߳௩௧ି௦ଶ  are lagged autoregressive and 

moving average terms such that ߪ௧(ୀଵ,…,)
ଶ  are functions of ߪ௧ିଶ  and ߳௩௧ି௦ଶ  with respective 

matrices of parameters ߙ.(ୀଵ,…,) and ߚ௩.௦(௩ୀଵ,…,), then ߪ௧(ୀଵ,…,)
ଶ  are MGARCH(p,q) 

models.  
 
The models are expressed in matrix form as follows: 
 

൮

ଵ௧ଶߪ

ଶ௧ଶߪ
⋮
௧ߪ
ଶ

൲ = ቌ

ଵߤ
ଶߤ
⋮
ߤ

ቍ + ൮

ଵ.ଵߙ⋯ଵଶ.ଵߙଵଵ.ଵߙ
ଶ.ଵߙ⋯ଶଶ.ଵߙଶଵ.ଵߙ
⋮
ଵ.ଵߙ

⋮
ଶ.ଵߙ

 ⋮
… .ଵߙ

൲

⎝

⎛
ଵ௧ିଵଶߪ

ଶ௧ିଵଶߪ

⋮
௧ିଵଶߪ ⎠

⎞ 
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+൮

ଵ.ଶߙ⋯ଵଶ.ଶߙଵଵ.ଶߙ
ଶ.ଶߙ⋯ଶଶ.ଶߙଶଵ.ଶߙ
⋮
ଵ.ଶߙ

⋮
ଶ.ଶߙ

 ⋮
.ଶߙ…

൲

⎝

⎛
ଵ௧ିଶଶߪ

ଶ௧ିଶଶߪ

⋮
௧ିଶଶߪ ⎠

⎞ + ⋯+ ൮

ଵ.ߙ⋯ଵଶ.ߙଵଵ.ߙ
ଶ.ߙ⋯ଶଶ.ߙଶଵ.ߙ
⋮
ଵ.ߙ

⋮
ଶ.ߙ

 ⋮
… .ߙ

൲

⎝

⎜
⎛
ଵ௧ିଶߪ

ଶ௧ିଶߪ

⋮
௧ିଶߪ

⎠

⎟
⎞

 

 

+൮

ଵߚ⋯ଵଶ.ଵߚଵଵ.ଵߚ .ଵ
ଶ.ଵߚ⋯ଶଶ.ଵߚଶଵ.ଵߚ
⋮
ଵ.ଵߚ

⋮
ଶ.ଵߚ

 ⋮
.ଵߚ…

൲

⎝

⎛
߳ଵ௧ିଵଶ

߳ଶ௧ିଵଶ

⋮
߳௧ିଵଶ ⎠

⎞ + ൮

ଵ.ଶߚ⋯ଵଶ.ଶߚଵଵ.ଶߚ
ଶ.ଶߚ⋯ଶଶ.ଶߚଶଵ.ଶߚ
⋮
ଵ.ଶߚ

⋮
ଶ.ଶߚ

 ⋮
… .ଶߚ

൲

⎝

⎛
߳ଵ௧ିଶଶ

߳ଶ௧ିଶଶ

⋮
߳௧ିଶଶ ⎠

⎞ 

 

+⋯+

⎝

⎜
⎛
ଵ.ߚ⋯ଵଶ.ߚଵଵ.ߚ

ଶ.ߚ⋯ଶଶ.ߚଶଵ.ߚ
⋮
ଵ.ߚ

⋮
ଶ.ߚ

 ⋮
⎠.ߚ…

⎟
⎞

⎝

⎜
⎛
߳ଵ௧ିଶ

߳ଶ௧ିଶ

⋮
߳௧ିଶ

⎠

⎟
⎞

                                                                              (12) 

 
The expansion of the above matrices is as applicable to Vector Autoregressive (VAR) 
models, Wikipedia (2012), Eric and Jiahui (2006), Mittnik (1989) and Chepngetich and John 
(2015). The pairs of matrices on the right hand side (RHS) of equation 12 are compatible in 
multiplication such that, 

ଵ௧ଶߪ (1) is a linear combination of ߤଵ, ௧ି(ୀଵ,…, ;ୀଵ,…,)ߪ
ଶ  and ߳௩௧ି௦(௩ୀଵ,…, ;௦ୀଵ,…,)

ଶ  with 
associated parameters ߙଵ.(ୀଵ,…, ;ୀଵ,…,) ܽ݊݀ ߚଵ௩.௦(௩ୀଵ,…, ;௦ୀଵ,…,). 

ଶ௧ଶߪ (2) is a linear combination of ߤଶ,ߪ௧ି(ୀଵ,…, ;ୀଵ,…,)
ଶ  and ߳௩௧ି௦(௩ୀଵ,…, ;௦ୀଵ,…,)

ଶ  with 
associated parameters ߙଶ.(ୀଵ,…, ;ୀଵ,…,) ܽ݊݀ ߚଶ௩ .௦(௩ୀଵ,…, ;௦ୀଵ,…,). 

௧ߪ (3)
ଶ is a linear combination of ߤ ௧ି(ୀଵ,…, ;ୀଵ,…,)ߪ,

ଶ  and ߳௩௧ି௦(௩ୀଵ,…, ;௦ୀଵ,…,)
ଶ  with 

associated parameters ߙ.(ୀଵ,…, ;ୀଵ,…,) ܽ݊݀ ߚ௩.௦(௩ୀଵ,…, ;௦ୀଵ,…,). 
The expansion of the above matrices produces the following MGARCH models, 
 
ଵ௧ଶߪ = ଵߤ + ଵ௧ିଵଶߪଵଵ.ଵߙ + ଶ௧ିଵଶߪଵଶ.ଵߙ + ⋯+ ௧ିଵଶߪଵ.ଵߙ + ଵ௧ିଶଶߪଵଵ.ଶߙ + ଶ௧ିଶଶߪଵଶ.ଶߙ + ⋯+ 
௧ିଶଶߪଵ.ଶߙ + ⋯+ ଵ௧ିଶߪଵଵ.ߙ + ଶ௧ିଶߪଵଶ.ߙ + ⋯+ ௧ିଶߪଵ.ߙ + ଵଵ.ଵ߳ଵ௧ିଵଶߚ + ଵଶ.ଵ߳ଶ௧ିଵଶߚ  

+⋯+ ଵ.ଵ߳௧ିଵଶߚ + ଵଵ.ଶ߳ଵ௧ିଶଶߚ + ଵଶ.ଶ߳ଶ௧ିଶଶߚ + ⋯+ ଵ.ଶ߳௧ିଶଶߚ + ⋯+ ଵ௧ିଶߪଵଵ.ߚ + 
ଵଶ.߳ଶ௧ିଶߚ + ⋯+ ଵ.߳௧ିଶߚ                                                                                                       (13) 

ଶ௧ଶߪ = ଶߤ + ଵ௧ିଵଶߪଶଵ.ଵߙ + ଶ௧ିଵଶߪଶଶ.ଵߙ + ⋯+ ௧ିଵଶߪଶ.ଵߙ + ଵ௧ିଶଶߪଶଵ.ଶߙ + ଶ௧ିଶଶߪଶଶ.ଶߙ + ⋯+ 
௧ିଶଶߪଶ.ଶߙ + ⋯+ ଵ௧ିଶߪଶଵ.ߙ + ଶ௧ିଶߪଶଶ.ߙ + ⋯+ ௧ିଶߪଶ.ߙ + ଶଵ.ଵ߳ଵ௧ିଵଶߚ + ଶଶ.ଵ߳ଶ௧ିଵଶߚ  

+⋯+ ଶ.ଵ߳௧ିଵଶߚ + ଶଵ.ଶ߳ଵ௧ିଶଶߚ + ଶଶ.ଶ߳ଶ௧ିଶଶߚ + ⋯+ ଶߚ .ଶ߳௧ିଶଶ + ⋯+ ଵ௧ିଶߪଶଵ.ߚ + 
ଶଶ.߳ଶ௧ିଶߚ + ⋯+ ଶ.߳௧ିଶߚ                                                                                                       (14) 

 
 ⋮          ⋮ 
 
௧ߪ
ଶ = ߤ + ଵ௧ିଵଶߪଵ.ଵߙ + ଶ௧ିଵଶߪଶ.ଵߙ + ⋯+ ௧ିଵଶߪ.ଵߙ + ଵ௧ିଶଶߪଵ.ଶߙ + ଶ௧ିଶଶߪଶ.ଶߙ + ⋯ 

 
௧ିଶଶߪ.ଶߙ + + ⋯+ ଵ௧ିଶߪଵ.ߙ + ଶ௧ିଶߪଶ.ߙ + ⋯+ ௧ିଶߪ.ߙ + ଵ.ଵ߳ଵ௧ିଵଶߚ + 
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ଶ.ଵ߳ଶ௧ିଵଶߚ + ⋯+ .ଵ߳௧ିଵଶߚ + ଵ.ଶ߳ଵ௧ିଶଶߚ + ଶ.ଶ߳ଶ௧ିଶଶߚ + ⋯+ .ଶ߳௧ିଶଶߚ + ⋯+ 
 
ଵ௧ିଶߪଵ.ߚ + ଶ.߳ଶ௧ିଶߚ + ⋯+ .߳௧ିଶߚ                                                                           (15) 

 
The above models reduce to the form 
 

ଵ௧ଶߪ = ଵߤ + ߙଵ.ߪ௧ିଶ



ୀଵ

+


ୀଵ

ߚଵ௩.௦߳௩௧ି௦ଶ



௦ୀଵ



௩ୀଵ

                                                                 (16) 

 

ଶ௧ଶߪ = ଶߤ + ߙଶ.ߪ௧ିଶ



ୀଵ

+


ୀଵ

ߚଶ௩.௦߳௩௧ି௦ଶ



௦ୀଵ



௩ୀଵ

                                                                 (17) 

 
⋮     ⋮ 

௧ߪ
ଶ = ߤ + ߙ.ߪ௧ିଶ



ୀଵ

+


ୀଵ

ߚ௩.௦߳௩௧ି௦ଶ



௦ୀଵ



௩ୀଵ

                                                             (18) 

 
Equations 16, 17 and 18 are reduced to the form 
 

௧ଶߪ = ߤ +  ߙ.ߪ௧ିଶ



ୀଵ

+
 ,

,ୀଵ

 ߚ௩.௦߳௩௧ି௦ଶ



௦ୀଵ

 ,

 ,௩ୀଵ

                                                                   (19) 

where, ݉ = ݊. 
 
From equation 19 
 

௧ଶߪ = ߤ +  ߙ.ߪ௧ିଶ



ୀଵ

,

,ୀଵ

                                                                                                       (20) 

and 
 

௧ଶߪ = ߤ +  ߚ௩.௦߳௩௧ି௦ଶ



௦ୀଵ

 ,

,௩ୀଵ

                                                                                                      (21) 

 
Equations 20 and 21 are ISO-MGARCH(p,0) models and ISO-MGARCH(0,q) models, 
respectively. These are Isolated Multivariate Generalised Autoregressive Conditional 
Heteroscedasticity models for volatility measure, whose behaviour through correlogram 
check is characterised by autoregressive or moving average process. These models modify 
Borllerslev et al. (1988).  
 
Conditions for Model Identification: 
 
Equation 20 is ISO-MGARCH(p,0) model of the form 

௧ଶߪ = ߤ +  ߙ.ߪ௧ିଶ



ୀଵ

 ,

,ୀଵ
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Given equation 19 above, 
let ߪ௧ଶ = ߤ  + ܣ +   ,ݐ݊ܽݐݏ݊ܿ ݏ݅ ߤ where ,ܤ
 

ܣ =  ߙ.ߪ௧ିଶ



ୀଵ

 ,

,ୀଵ

 

and 
 

ܤ =  ߚ௩.௦߳௩௧ି௦ଶ



௦ୀଵ

,

,௩ୀଵ

 

 
ݏ ݐ݁ܮ =  0,  

 

=> ܤ =  ௩.߳௩௧ିଶߚ

,

,௩ୀଵ

= ߚ௩.߳௩௧ିଶ


௩ୀଵ



ୀଵ

 

= [ߚଵ߳ଵ௧ଶ + ଶ߳ଶ௧ଶߚ + ⋯+ ߳௧ଶߚ ]


ୀଵ

 

= ߳ଵ௧ଶ ଵଵߚ] + ଶଵߚ + ⋯+ [ଵߚ + ߳ଶ௧ଶ ଵଶߚ] + ଶଶߚ + ⋯+ [ଶߚ + ⋯ 
 

+߳௧ଶ ଵߚ] + ଶߚ + ⋯+  [ߚ
 

= ଵଵ߳ଵ௧ଶߚ + ଶଵ߳ଵ௧ଶߚ + ⋯+ ଵ߳ଵ௧ଶߚ + ଵଶ߳ଶ௧ଶߚ + ଶଶ߳ଶ௧ଶߚ + ⋯+ ଶ߳ଶ௧ଶߚ  + 
 

… + ଵ߳௧ଶߚ + ଶ߳௧ଶߚ + ⋯+ ߳௧ଶߚ  
 
It is obvious that ݏ =  0 => ߳௩௧ିଶ  ,Therefore, taking expectation of B becomes .(ଶߪ,0)݀݅݅~
 

(ܤ)ܧ = ଵଵ߳ଵ௧ଶߚ)ܧ + ଶଵ߳ଵ௧ଶߚ + ⋯+ ଵ߳ଵ௧ଶߚ + ଵଶ߳ଶ௧ଶߚ + ଶଶ߳ଶ௧ଶߚ + ⋯+ ଶ߳ଶ௧ଶߚ  + 
 

… + ଵ߳௧ଶߚ + ଶ߳௧ଶߚ + ⋯+ ߳௧ଶߚ ) 
 
= ଵ௧ଶ߳)ܧଵଵߚ ) + ଵ௧ଶ߳)ܧଶଵߚ ) + ⋯+ ଵ௧ଶ߳)ܧଵߚ ) + ଶ௧ଶ߳)ܧଵଶߚ ) + ଶ௧ଶ߳)ܧଶଶߚ ) + ⋯+ ଶ௧ଶ߳)ܧଶߚ ) + 
 
… + ௧ଶ߳)ܧଵߚ ) + ௧ଶ߳)ܧଶߚ ) + ⋯+ ௧ଶ߳)ܧߚ ) = 0, since ܧ(߳௩௧ଶ ) = 0 
 
Eliminating B (B= 0) leaves ߪ௧ଶ with only autoregressive component. Hence, 
 

௧ଶߪ = ߤ +  ߙ.ߪ௧ିଶ



ୀଵ

 ,

,ୀଵ

 

Similarly, given equation (19) above, 
݇ =  0 => ௧ିଶߪ = 0. This implies the autoregressive component of the response vector of 
variances is uncorrelated or exhibits exponential decay, giving rise to pure moving average 
component of the process as applicable to ARMA process. Therefore, ߙ. = 0, implies that 
௧ଶߪ  are expressed only in terms of ߳௩௧ି௦ଶ  with ߚ௩.௦ ≠ 0. This precludes ߪ௧ିଶ  in the expression 
of ߪ௧ଶ . Eliminating A(A= 0), leaves ߪ௧ଶ  with only moving average component. Hence, 
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௧ଶߪ = ߤ +  ߚ௩.௦߳௩௧ି௦ଶ



௦ୀଵ

,

,௩ୀଵ

ܱܵܫ ݏ݅   .݈݁݀݉(ݍ,0)ܪܥܴܣܩܯ−

 
3.3 Model selection criteria 

Here, different model selection criteria are used to compare the performances of univariate 
and multivariate GARCH models. These include; 
(i) Akaike Information Criterion (AIC): 
 

ܥܫܣ = ݈݊ ൬
ܴܵܵ
݊ ൰+ ൬

2݇
݊ ൰                                                                                                               (22)  

where, RSS = residual sum of squares, n = number of observations, k = number of parameters 
in the model. 
(ii) Bayesian Information Criterion (BIC): 

ܥܫܤ = ݊ × ݈݊ ൬
ܴܵܵ
݊ ൰+   (23)                                                                                               {(݊)݈݊}ܭ

where, RSS, n and K are as defined above. 
 
(iii) Schwarz’s Information Criterion (SIC): 

ܥܫܵ = ݈݊ ൬
ܴܵܵ
݊ ൰+ ൬

݇
݊൰ ln (݊)                                                                                                         (24)  

where, RSS, n and K are as defined above. 
 

4. Analysis and Results 

4.1 Graphical analysis 

Here, is the graphical display of each of the return series. Figures 1, 2 and 3 present 
the trend analysis of the three return series. Each trend equation indicates stability in the 
series from which volatility measures are obtained. 

 

 
Figure 1: Return series of Average CPI 
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Figure 2: Return Series of Urban CPI 

 
Figure 3: Return Series of Rural CPI 
 

 
Figure 4: Autocorrelation Function of Average Consumer Price Index 
 

 
Figure 5: Partial Autocorrelation Function of Average Consumer Price Index 
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4.2 Univariate GARCH (p, 0) Model Estimates 

The real life data for the verification of the models are three classes of Nigeria Price 
Consumer Index. These include the Average Consumer Price Index (ACPI), Urban Consumer 
Price Index (Urban CPI) and Rural Price Index (Rural CPI). The variance of the return series 
measures the volatility of each CPI. Firstly, we consider estimation of parameters for 
Univariate GARCH models for the Average CPI, Urban CPI and Rural CPI. 
The estimates are obtained as follows: 
 
Table 1: Parameter Estimates of the Univariate GARCH (2,0) Models 
Predictor Coefficients SE. Coefficients T P 
Average Consumer Price Index 
Constant 0.00002597 0.00000663 3.91 0.000 
ଵ௧ିଵଶߪ  0.20799 0.05714 3.64 0.000 
ଵ௧ିଶଶߪ  0.20001 0.05688 3.52 0.001 

Urban Consumer Price Index 
Constant 0.00003008 0.00000673 4.47 0.000 
ଶ௧ିଵଶߪ  0.24917 0.05822 4.28 0.000 

ଶ௧ିଶଶߪ  0.05253 0.05823 0.90 0.368 

Rural Consumer Price Index 
Constant 0.00004036 0.00000906 4.46 0.000 
ଷ௧ିଵଶߪ  0.14877 0.057472 2.59 0.010 
ଷ௧ିଶଶߪ  0.17107 0.05726 2.99 0.003 

 
The Analysis in Table1 provides parameter estimates for the univariate GARCH models for 
the conditional variances of the Average, Urban and Rural CPI represented by ߪଵ௧ଶ ,
ଶ௧ଶߪ ଷ௧ଶߪ ݀݊ܽ   respectively. The order of the GARCH models is suggested on the basis of the 
ACF and PACF in Figures 4 and 5. The estimated parameters are significant for each of the 
Isolated GARCH Models for the pure autoregressive process. 
 

4.3 Isolated Multivariate GARCH (p,0) Model Estimates 

Table 2 gives estimates of the multivariate GARCH models with response vector 
conditional variances of Average, Urban and Rural Consumer Price Indices. The choice of 
the order of the models is as applicable to the univariate GARCH models whose parameter 
estimates are in Table1. 

 
Figure 6: Autocorrelation function the residual of ߪଵ௧ଶ MGARCH model 
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Table 2: Parameter Estimates of the Multivariate GARCH(2,0) Models 
Predictor Coefficients SE. Coefficients T P 
Average Consumer Price Index 
Constant 0.00002102 0.00000689 3.05 0.003 
ଵ௧ିଵଶߪ  0.0765 0.1811 0.42 0.673 
ଵ௧ିଶଶߪ  0.0160 0.1797 0.09 0.929 
ଶ௧ିଵଶߪ  0.15513 0.07689 2.02 0.045 
ଶ௧ିଶଶߪ  0.17229 0.07743 2.23 0.027 
ଷ௧ିଵଶߪ  0.0163 0.1202 0.14 0.892 
ଷ௧ିଶଶߪ  0.0641 0.1198 0.54 0.593 

Urban Consumer Price Index 
Constant 0.00002642 0.00000713 3.70 0.000 
ଵ௧ିଵଶߪ  -0.0259 0.1874 -0.14 0.890 
ଵ௧ିଶଶߪ  0.0778 0.1860 0.42 0.676 
ଶ௧ିଵଶߪ  0.22871 0.07956 2.87 0.004 
ଶ௧ିଶଶߪ  -0.01529 0.08012 -0.19 0.849 
ଷ௧ିଵଶߪ  0.0566 0.1244 0.45 0.650 
ଷ௧ିଶଶߪ  0.0285 0.1240 0.23 0.818 

Rural Consumer Price Index 
Constant 0.00003225 0.00000923 3.49 0.001 
ଵ௧ିଵଶߪ  -0.0514 0.2425 -0.21 0.832 
ଵ௧ିଶଶߪ  0.0543 0.2406 0.23 0.822 
ଶ௧ିଵଶߪ  0.2040 0.1029 1.98 0.048 
ଶ௧ିଶଶߪ  0.2147 0.1037 2.07 0.039 
ଷ௧ିଵଶߪ  0.0930 0.1610 0.53 0.564 
ଷ௧ିଶଶߪ  0.0563 0.1604 0.35 0.726 

 

The autocorrelation function in Figure 6 exhibits pure white noise process of the 
residual term. This precludes moving average part of the model since the volatility measures 
are accounted for by autoregressive process only both in the univariate and multivariate 
GARCH models.  
 
Table 3: Information Criteria 
S/N Model Specification Response Variance AIC BIC SIC 
1 GARCH (2,0)  ߪଵ௧ଶ  -18.4042 -5477.05 -18.3794 
2 GARCH (2,0) ߪଶ௧ଶ  -18.3615 -5464.35 -18.3367 
3 GARCH (2,0) ߪଷ௧ଶ  -17.8064 -5298.92 -17.7816 
4 MGARCH (2,0) ߪଵ௧ଶ  -18.4156 -5465.67 -18.3412 
5 MGARCH (2,0) ߪଶ௧ଶ  -18.3474 -5445.35 -18.2730 
6 MGARCH (2,0) ߪଷ௧ଶ  -17.8321 -5291.79 -17.7577 
 
Table 4 contains values of model information selection criteria of equation 22, 23 and 24. 
The univariate and multivariate GARCH models compete favourably in each response 
variance. The two sets of models have the same comparative advantage in capturing volatility 
measure of each CPI. 
 



 Journal of the Nigerian Statistical Association, Vol. 31, 2019                                                                  Usoro et al. 

49 
 

5 Summary and Conclusion 

The major focus of this research was to identify some classes of Multivariate GARCH 
models, considering the behaviour of the return series and the volatility measures of the 
Nigeria Consumer Price Indices. The time plot of each of the return series exhibited volatility 
clustering as indicated in Figures 1, 2 and 3. This was followed with the autocorrelation and 
partial autocorrelation functions of the volatility series displayed in Figures 4 and 5. The ACF 
and PACF featured the behaviour of the volatility series and is accounted for by a pure 
autoregressive process. This explained the reason for Isolated Multivariate GARCH(p,0) 
Model. From the estimated models, the order p = 2 is obtained from the PACF of the 
volatility measure. Ordinarily, GARCH(p,q) model is a generalized model and of course an 
extension of ARCH(q) model in similar form with ARMA(p,q) model (where p and q 
represent the order of autoregressive and moving average processes), from which each of the 
processes is isolated on certain conditions. The idea of identifying MGARCH(p.0) and 
MGARCH(0.q), where p and q represent the order of each isolated process is under a certain 
condition that there exists some volatility measures accounted for by either autoregressive, 
moving average or both processes as in the case of Autoregressive Moving Average (ARMA) 
Process and Bilinear Autoregressive Moving Average (BARMA) Process. 

From the Multivariate Generalized Conditional Autoregressive Heteroscedasticity 
MGARCH(p,q) model, Isolated Multivariate Generalized Conditional Autoregressive 
Heteroscedasticity, ISO-MGARCH(p,0) and Isolated Multivariate Generalized Conditional 
Autoregressive Heteroscedasticity, ISO-MGARCH(0,q) have been identified for volatility 
measures accounted for by a single stationary autoregressive or moving average process. 
Under certain conditions the isolated models 20 and 21 have been developed. Furtherance to 
verification, parameters of the identified models are estimated with volatility measures of 
Nigeria CPI data from January 1995 to December 2019. Table 2 displays parameter estimates 
of the Isolated Multivariate Generalized Conditional Autoregressive Heteroscedasticity 
Models. Figure 6 is the autocorrelation function of the residual of the fitted models, 
indicating a pure white noise process. Hence, the models are appropriate for volatility 
measures depending on the dynamic nature of each economic or financial time series. 
Notwithstanding the fact that a number of parameters of the ISO-MGARCH(2,0) models are 
not significant, the multiple parameter models have given way for possible interactions, 
hence, the reason for significant contributions of urban price index lagged variance to average 
and rural price indices, which is the advantage of allowing large range of interactions 
between each response and other predictor variances. Akaike Information Criterion (AIC), 
Bayesian Information Criterion (BIC) and Schwarz’s Information Criterion (SIC) results in 
Table 3 have revealed same comparative advantage of the isolated univariate and multivariate 
GARCH models from the empirical data. The validity of the ISO-MGARCH model is evident 
in the autocorrelation function in Figure 6. The existing gap between this paper and previous 
researches is the identification of isolated univariate and multivariate GARCH models from 
the generalized form whose response vector of variances (volatility measures) could be 
expressed as linear combinations of its distributed lagged variance from the original series 
precluding its dependence on the squared errors and simulated values of the standard normal 
random variable (ݖ௧). As an alternative to the existing approach, ISO-MGARCH models 
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require the behavioural structures of the ACF and PACF of the raw response variance like in 
the case of ARMA/ARIMA process. 
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