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A fundamental hypothesis in theoretical statistical quality control is that samples are indepen-
dently and identically distributed; but this assumption is frequently violated in many produc-
tion processes. Moreover, the presence of autocorrelated data in many process control applica-
tions gravely affects the performance of classical control charts if not appropriately accounted
for. In this paper, bootstrap T 2 and bootstrap multivariate exponential weighted moving average
(BMEWMA) control charts are proposed for monitoring and controlling multivariate autocor-
related processes. From numerical illustration, results obtained from the Average Run Length
(ARL), standard deviation run length (SDRL), median run length (MRL) and percentiles run
length (PRL) displayed in tabular and graphical forms, shows that the proposed bootstrap control
methods performed better than the F-distribution T 2 control method.
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1. Introduction

There are many situations in which it is necessary to monitor two or more related quality
characteristics simultaneously. In such cases, multivariate statistical process monitoring
procedures should be considered since there may be some relationship between the quality
characteristics. The use of information from multiple variables may provide a better, more
accurate, monitoring strategy compared to the used of individual variables that may inflate
the overall false alarm rate (probability type I error) thereby resulting to an incorrect
determination of control limits. The first solution to this problem was T 2 statistic suggested
by Hotelling (1947) for monitoring the mean vector of multivariate processes. However,
T 2 control chart is good in detecting large shift in process mean vector, Hwarng (2008).
The multivariate exponentially weighted moving average (MEWMA) was introduced by
Lowry et al. (1992) as an extension of the univariate exponentially weighted moving average
(EWMA). The primary goal of the MEWMA is to quickly detect small changes in a process
more rapidly than other multivariate control charts based on the fact that the charting
scheme takes advantage of the knowledge from previous observations in any given process.
In other words, the MEWMA control chart is good at detecting small to moderate shift in
the mean vector of a process.

The study of optimal design of MEWMA charts using the average run length and the
median run length was carried out by Lee and Khoo (2006). Champ and Jones-Farmer
(2007) studied the properties of the MEWMA control chart when parameters are esti-
mated. Joner Jr. et al. (2008) developed a one-sided MEWMA control chart for health
surveillance. Mahmoud and Zahran (2010) investigate the performance of the MEWMA
chart with some different recommended values of smoothing parameters of λ when the in
control parameters are estimated. A modified MEWMA control scheme for an analytical
process data was introduced by Patel and Divecha (2013) with a view for detecting shifts
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of all kinds in case of highly first order vector autoregressive VAR (1) process. Haq et al.
(2015) developed a new maximum exponentially weighted moving average control chart for
monitoring process mean and dispersion. Lu (2015) proposed an Extended Nonparamet-
ric Exponentially Weighted Moving Average Sign Control Chart. Brown and Moltchanova
(2015) introduced New Exponentially Weighted Moving Average Control Charts for Mon-
itoring Process Dispersion. Rabyk and Schmid (2016) studied the EWMA control charts
for detecting changes in the mean of a long-memory process.

Generally, most parametric multivariate control charts has the advantage of being able
to monitor multiple quality characteristics simultaneously for both changes in the mean
vector and correlation structure while maintaining a specified probability similar to type I
error (α). However, the problem involve in the use of parametric multivariate control chart
is the problem of violation of the assumption of multivariate normality that is required for
many charts. This study shall consider the bootstrap multivariate exponentially weighted
moving average control charts in order to overcome the problem of violating the assumption
of multivariate normality as well as detecting small shift in the process. The remainder of
the paper is organized as follows: Section 2 introduces methods and the proposed bootstrap
ARL algorithms in obtaining Hotelling’s T 2 and multivariate exponentially weighted moving
average considered in this study. Section 3 is devoted to the empirical study of the efficiency
of the proposed methods, discussion and interpretations of results, while Section 4 is on the
conclusions.

2. Multivariate Exponentially-Weighted Moving Average (MEWMA)
Control Chart

Suppose X = (X1, X2, · · · , Xd) be d-dimensional quality characteristics obtained from a
process of interest. Assuming that the process is in control and is d-dimensional normal
distribution with mean vector µ0 and variancecovariance matrix Σ0, i.e., X ∼ Nd(µ0,Σ0),
where µ0 and Σ0 are unknown. But if µ0 and Σ0 can be estimated from a set of K training
samples each with size n, and the process was in control when these K training samples
were taken. A multivariate EWMA control chart is proposed by Lowry et al. (1992) as
follows:

Zi = ΛXi + (1− Λ)Zi−1 (1)

where Λ is the drag(λ1, λ2, · · · , λn = λ), 0 ≤ λi ≤ 1 for i = 1, 2, · · · , d. If there is no a-
priori reason to weight past observations differently for the d-quality characteristics being
monitored, then λ1 = λ2 = · · · = λn = λ. The initial value Z0 is usually obtained equal
to the in-control mean vector of the process. The multivariate EWMA control chart is
equivalent to the T 2-Chart and is denoted as:

T 2
i = Z ′iΣ

−1
Zi
Zi > h, i = 1, 2, · · · (2)

where ΣZi
is the variance-covariance matrix of Zi. The value h is obtained via simulation

to achieve a specified in-control ARL. The ARL performance of the MEWMA control chart
depends only on the non-centrality parameter. This means that the MEWMA has the
property of directional invariance. The variance-covariance matrix of Zi is estimated as:

ΣZi
=

λ

2− λ
[
1− (1− λ)2i

]
Σ (3)
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An approximation of the variance-covariance matrix ΣZi
when approaches infinity, is ex-

pressed as:

ΣZi
=

λ

2− λ
Σ (4)

From the MEWMA vector in Equation (3), Zi is expanded recursively to obtain:

Zi = λXi + λ(1− λ)Xi−1 + λ(1− λ)2Xi−2 + · · ·+ λ(1− λ)i−1X1 + (1− λ)iZ0 (5)

When µ0 and Σ0 are unknown, then K in-control samples of size n each are used to estimate
the parameters. The in-control process mean vector is estimated by:

X =

k∑
i=1

Xi

k
and S =

k∑
i=1

Si
k

(6)

where

Xi =

n∑
h=1

Xih

n
and Si =

n∑
h=1

(
Xih −Xi

) (
Xih −Xi

)′
n

(7)

are the sample mean vector and sample variancecovariance matrix of the ith training sam-
ple, i = 1, 2, · · · , k respectively. The charting constant (λ) may be chosen in a way that
similar average run lengths are achieved under a wide range of distributions. The values
acceptable for the charting constant are often very small (0 < λ ≤ 1), which means putting
the majority of the weight on the past observations instead of the most current, Sullivan
and Stoumbos (2001), Stoumbos and Sullivan (2002), Woodall and Mahmoud (2005).

The common assumption about any given sets of observations is that they are indepen-
dently and identically distributed (i.i.d.) over time. However, this assumption may not hold
in many of today’s applications. For example, the quality characteristics being monitored
may be correlated with itself over time; this may introduce positive or negative autocor-
relation that can significantly affect the performance of control chart procedure. This au-
tocorrelation (also known as serial correlation) should be considered while monitoring the
quality characteristic(s) since it has been shown both in the univariate and the multivariate
cases that failure to account for such autocorrelation may lead to too many false alarms,
Psarakis and Papaleonida (2007), Montgomery (2009). Positive autocorrelation (e.g. low
values tend to be followed by other low values, or high values tend to follow other high
values) can possibly lead to control limits that maybe too narrow, this may increase the
frequency of false alarms, Lee and Jun (2012). On the other hand, negative autocorrelation
(low values tend to be followed by other high values, or high values tend to follow other
low values) may lead to may leads to control limits that are too wide. Hence special causes
of variation that may be present in the process could be missed or not identified, Jarrett
and Pan (2007), Franco et al. (2014), Leoni et al. (2015).

The usual multivariate control charts (for i.i.d. data) may not be appropriate for mon-
itoring a multivariate autocorrelated data. One approach would be to widen the control
limits to account for the autocorrelation. A multivariate model, say the vector autoregres-
sive (VAR) model, can be fitted to the quality characteristics to obtain the residuals to
be monitored. Fitting a VAR(1) model (a VAR model of lag 1) to the multivariate au-
tocorrelated data and the residuals monitored using Hotelling’s T 2 chart is an approach
suggested by Jarrett and Pan (2007) and Pan and Jarrett (2007). Also the use of control
chart that applies a neural network, called the Neural Network Identifier was created by
Hwarng (2004) and Hwarng (2008). The chart not only detects the multivariate signal but
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determines which variable or variables are at fault. It, however, requires a large amount of
data and time to use properly.

Phaladiganon et al. (2011) introduced the percentile bootstrap method as a means of
obtaining Hoteling’s T 2 control limits assuming that the distribution is not multivariate
normal. However, Phaladiganon et al. (2011) method bootstrapped from Hotelling’s T 2

statistic obtained by collapsing the multivariate data into univariate, and this will results
to control limits that is good in detecting of large shift only. Also, Adewara and Adek-
eye (2012) introduced the idea of bootstrapping method to tackle the problem of quality
characteristics that are not correlated as well as the minimum maximum control meth-
ods. Application of the minimax control chart by way of chi square control method for
multivariate manufacturing process was also introduced by Balali (2013). Kalgonda (2013)
introduced the used of balance bootstrap percentile method to estimate critical value and
control limits for autocorrelated processes. Gandy and Kvaloy (2013) proposed the use of
definite restricted bootstrap control charts methods for performance evaluation. The block
bootstrap control limits for multivariate autocorrelated process was proposed by Kalgonda
(2015) having it view around the control procedure based on Z-statistics. In this study,
we shall consider the bootstrap multivariate exponentially weighted moving average con-
trol charts in order to overcome the problem of violating the assumption of multivariate
normality as well as detecting small shift in the process.

2.1 Bootstrap Hotelling’s T 2 and Bootstrap Multivariate Exponentially
-Weighted Moving Average (BMEWMA) methods

The multivariate T 2 (F-distribution) chart is one of the charts used by Hwarng (2004) in
comparing their neural-network-based identifier. Traditionally, multivariate quality control
methods are proposed under the assumption that observations are normally distributed
with the mean vector µ and covariance matrix Σ. The process observation vector Yi at time
t, can be denoted as

Yt = µ+ εt, t = 1, 2, · · · (8)

where εt is a multivariate normal random vector with the mean vector of zeros and co-
variance matrix Σ. To ascertain whether the process mean vector is in control when the
process covariance matrix Σ is known, the Shewhart control chart with upper control limit
UCL = χ2

p,α is given by the statistic:

χ2
t = (Yt − µ0)

′Σ−1(Yt − µ0) (9)

where µ0 is the interest value of the mean vector. The usual practice is that when the
underlying assumption is violated, there will be an increase in the rate of false alarms. In
some cases where the process observations are either positive or negative auto-correlated,
the performance of the control charts maybe seriously affected, thereby leading to unnec-
essary correlation of the process. To overcome this problem, vector autoregressive model of
lag1denoted by VAR (1) is denoted by:

Yt = µt +ϕ(Yt−1 − µt) + εt (10)

where µt is the vector of mean values at time t, εt is a vector of normal random variables with
the mean vector of zeros, covariance matrix, sigma (Σ), and a d×d matrix of autocorrelation
parameters (ϕ). Suppose Yt is taken to be stationary, under this assumption, µt is constant
over time, then Equation (10) now takes the form:

Yt = µ+ϕ(Yt−1 − µ) + εt (11)
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Let γ(t, t+h) represent the crosscovariance matrix between Yt and Yt+h, and let its (ij)th
element be represented by γij(h), where

γij(h) = E {(Yit − µit)(Yjt+h − µjt+h)} (12)

As a result of stationary assumption, µt shall be constant of µ, while γ(t, t+ h) shall be a
function of the lagh only and may be written as γ(h). The crosscorrelation matrix ρ(h) at
lagh, is denoted by:

ρ(h) = V −1/2γ(h)V 1/2 (13)

where

V = diag(γ11(0), γ22(0), . . . , γdd(0)). (14)

Applying the Yule Walker relationship for covariance matrices of VAR (1) processes, the
crosscovariance matrix γ(0) at lag0 is obtained as:

γ(0) = ϕγ(0)ϕ′ + Σ (15)

To overcome the problem of violating multivariate normal assumption of observation vec-
tors as well as autocorrelation of sample observations, the bootstrap methods and vector
autoregressive model of lag 1 denoted by VAR (1) is proposed as shown in the algorithm.

ALGORITHM: Proposed bootstrap ARL procedures for bivariate case

Supposed a set of observations say x1 = x11, x12, · · · , x1n and x2 = x21, x22, · · · , x2n are
given;

(1) Combine the sample sizes of x1 and x2 of the sets of observation say,
x = (x11, x12, · · · , x1n, x21, x22, · · · , x2n).

(2) Draw a bootstrap sample with replacement from Step (1) to obtain
x∗ = x∗11, x

∗
12, · · · , x∗1n, x∗21, x∗22, · · · , x∗2n

(3) Repeat Step (2) a large number of times to obtain bootstrap replications

x∗ = x
∗(i)
11 , x

∗(i)
12 , · · · , x∗(i)1n , x

∗(i)
21 , x

∗(i)
22 , · · · , x∗(i)2n ,

where (i∗ = 1, 2, · · · , B). In general B is a large number (e.g., B = 3000).
(4) Obtain the value of sigma(Σ), autocorrelation parameters(ϕ), and cross-covariance

matrices γ(0) as described in Equations (11) and (15).
(5) Simulate data 10,000 times from the VAR(1) models with the proposed matrices of

the parameters (Σ), (ϕ), and γ(0) in Step (4).
(6) Set up a bootstrap T 2 and BMEWMA control limit for the chart that will gives

the desire in-control average run length (ARL) of 200 when both the mean shift are
zeros and take the values of (Σ), (ϕ), and γ(0) as stated in Step (4).

(7) Impute the control limit obtained and generate out of control ARL for the remaining
mean shifts chosen.

The performance of the bootstrap T 2 and BMEWMA control charts to detect mean shift
shall be compare with existing multivariate T 2 (F-distribution) charts.

2.2 Performance evaluation of a control chart-average run length

The expected number of samples taken before the chart signals is called the average run
length (ARL). During the in-control period, ARL = 1/α and is called ARL0. The risk
is the well known as type I error and is denoted by α = 1/ARL, Lee and Jun (2010).
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Conventionally, the average run length (ARL) serves as a very useful and standard criterion
for measuring the performance of a control chart scheme. ARL is the expected number of
data points collected before an out-of-control situation is signaled. When there is no shift
in both variables, these kinds of processes are deemed in-control. For in-control processes,
the ideal performance of control schemes should be that the control schemes cannot find
any shift, Lee and Jun (2012). However, this is impossible in reality since the type I error
exists. The probability of type I error is defined as the probability that a control scheme
detects a shift when no shift happens in the process. A good control scheme should have
small probability of type I error. In-control ARL is related to the measure of the probability
of type I error. The smaller the probability of type I error is, the longer the in-control ARL;
in other words, a good control scheme should have long in-control ARL.

When shift happens on any of the process variables, the process is regarded as an out-of-
control situation. When a process is out-of-control, there is a probability that the control
scheme deems it as in-control; this is defined as the probability of type II error. A good
monitoring scheme should have small probability of type II error. The out-of-control ARL
is related to the measure of the probability of type II error. The smaller the probability of
type II error is, the shorter the out-of-control ARL is. And the shorter the out-of-control
ARL is, the better the control scheme is. In general, a good control scheme should have
long in-control ARL and short out-of-control ARL. The performance of a control chart is
typically measured in terms of the ARL and SDRL. The ARL is the average number of
sample points that is plotted on a chart before the first out-of-control signal is detected
whereas the SDRL measures the spread of the run length distribution. When a process is
out-of-control, it is desirable to have small values of ARL and SDRL.

However, the median run length (MRL) measure provides a more meaningful explanation
on the in-control and out-of-control performances of the charts as in-control run length
distribution based on the ARL that is highly skewed. Moreover, the MRL profile is also
more readily understood by the practitioners compared to the ARL profile. The Percentiles
of Run Length (PRL) are 99 points which divide an array or a distribution into 100 equal
parts. They are denoted by P1, P2, · · · , P99. For instance, the 25th and 75th percentiles of
a distribution will be the values of the (25/100)th term and (75/100)th term along the
distribution respectively. Thus, the percentile of run length in this work shall be based on
the average of each of the percentile run length simulated 10000 times in R programming
language. The percentile is an informative and robust chart performance measure. The
entire run length distribution provides useful information about the performance of the
chart and a number of selected percentiles should help summarize this information. In this
work, bivariate auto-correlated and cross covariance matrices processes are considered. The
control limits of the charts will be simulated so that each chart has the same in-control
ARL of 200 approximately. In order to tune the in-control ARL to this desired value, several
computer programs were written in R language to analyze the data output.

3. Empirical Study

The data used in this section is from Montgomery (2002) on a manufacturing practice amid
two variables, x1 and x2, as shown in Table 1.

Table 1. Two quality characteristics from a production process
Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x1 58 60 50 54 63 53 42 55 46 50 49 57 58 75 55
x2 32 33 27 31 38 30 20 31 25 29 27 30 33 45 27

The aim is to set up a bootstrap T 2 and BMEWMA control limits for monitoring out
of control signals and measuring the performance of a control chart scheme adopting the
Average Run Length (ARL), Standard Deviation Run Length (SDRL), Median Run Length
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(MRL) and Percentiles Run Length (PRL). The results shall be compared with the F-
distribution T 2.

3.1 Presentation of results from simulation studies

Adopting Steps 1 3 from the proposed bootstrap procedures, bootstrap samples were
replicated 3000 times to obtained bootstrap data equivalent to the given data in Table 1.
Using Step (4) of the proposed bootstrap algorithm, both the bootstrap and original data
were imported to R programming language and results for the parameters are presented
as:

µ =

0

0

 , Σ =

 1 0.0226

0.0226 1

 , ϕ =

0.0644 0.1482

0.1322 0.0644

 , γ(0) =

3.9767 0.0649

0.0649 2.0603


for the bootstrap parameters and

µ =

0

0

 , Σ =

 1 0.9806

0.9806 1

 , ϕ =

0.0644 0.1482

0.1322 0.0644

 , γ(0) =

3.9767 0.0649

0.0649 2.0603


for the F-distribution parameters. Implementing the Simulation Code in the Appendix, sim-
ulation studies conducted 10,000 times from VAR(1) shows that the control limits (5.8801,
4.3135 and 4.0512) obtained adopting Step 7 from the proposed bootstrap algorithm pro-
duces an in-control ARL of 200.3049, 200.0333 and 200.3388 for F-distribution T 2, bootstrap
T 2 and BMEWMA respectively. This is shown in the ARL column of Table 2 for each of
the methods when there is 0 or no shift in the process.

 Table 2: Simulation results: ARL, SDRL and MRL from the three methods 

  ARL SDRL MRL 

Shift  
F-Distn 

T2 
Bootstrap 

T2 BMEWMA 
F-Distrn 

T2 
Bootstrap 

T2 BMEWMA 
F-Distrn 

T2 
Bootstrap 

T2 BMEWMA 

0 200.3049 200.0333 200.339 202.459 194.99 197.286 137 141 140 
0.5 174.2407 169.8069 52.5002 178.3 170.97 42.7994 118 117 41 
1 119.11 101.5343 15.4441 119.544 100.34 8.4408 81 71 14 

1.5 73.1259 49.7421 8.3958 73.3597 49.424 3.4089 50 34 8 
2 42.5684 21.7913 5.8036 42.6046 21.299 1.8907 29 15 6 

2.5 23.8237 9.9296 4.5007 23.0522 9.4776 1.1951 16 7 4 
3 13.8727 5.1004 3.7768 13.5441 4.5655 0.8647 10 4 4 

3.5 8.0663 2.8995 3.3162 7.7919 2.3611 0.6461 6 2 3 
4 4.7772 1.8868 3.013 4.3705 1.3232 0.5335 3 1 3 
5 1.8783 1.1715 2.5942 1.3884 0.4683 0.5069 1 1 3 

 

  Table 3: Simulation results: percentiles run length from the three methods 

 
25th Percentile 75th Percentile 95th Percentile 

Shift 
F-Distn 

T2 
Bootstrap 

T2 BMEWMA 
F-Distrn 

T2 
Bootstrap 

T2 BMEWMA 
F-Distrn 

T2 
Bootstrap 

T2 BMEWMA 

0 58 59 60 278 278 275 598 590 598 
0.5 50 49 22 238 234 69 531 514 137 
1 35 30 9 164 141 20 367 303 32 

1.5 21 15 6 100 69 10 220 148 15 
2 13 7 4 59 30 7 126 64 9 

2.5 7 3 4 33 14 5 70 28 7 
3 4 2 3 19 7 4 40 14 5 

3.5 3 1 3 11 4 4 24 8 4 
4 2 1 3 6 2 3 13 5 4 
5 1 1 2 2 1 3 5 2 3 
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Figure 1: ARL for the three Methods Compared when CL = 5.8801, 4.3135, and 4.0512 
 

 
 

Figure 2: SDRL for the three Methods Compared when CL = 5.8801, 4.3135, and 4.0512 
 

 
 

Figure 3: MRL for the three Methods Compared when CL = 5.8801, 4.3135, and 4.0512 
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The disparity amid the highest and smallest eigenvalue of the autocorrelation matrix
is shown to be less than 1 in absolute value, meaning that the process is stable. Results
of the simulation studies from the bootstrap T 2, BMEWMA and F-distribution T 2 are
summarized in Tables 2 and 3. Results in Table 2 and 3 were simulated 10000 times for
each method by imputing their various parameters (see the last part of every program in
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Figure 4: 25th PRL for the three Methods Compared when CL = 5.8801, 4.3135, and 4.0512 
 

Figure 5: 75th PRL for the three Methods Compared when CL = 5.8801, 4.3135, and 4.0512 
 

Figure 6: 95th PRL for the three Methods Compared when CL = 5.8801, 4.3135, and 4.0512 
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r-language from the appendix). ARL, SDRL, MRL and PRL were obtained by taking the
mean/average, standard deviation, median and percentiles of the run lengths respectively
as the shift in the process changes. Figures 1– 6 shows the results obtained when ARL,
SDRL, MRL and PRL are compared between control charts.
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3.2 Discussion and interpretation of results

Result of eigenvalues from the autocorrelation matrix is less than 1 in absolute value,
meaning that the process is stationary. Tables 2 and 3 summarizes the average run length
(ARL), standard deviation run length (SDRL), median run length (MRL) and percentiles
run length (PRL) from the three methods. From Tables 2 and 3, it is clear that the proposed
bootstrap T 2 and BMEWMA control methods are talented in identifying both large and
little shifts in a given process effectively. Various shift sizes (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4,
5) where adopted for practical reasons.

The first rows in Tables 2 with zero shift in the variables is said to indicate the in-
control ARL. This value is expected to be large with respect to the specified ARL 200 for
any of the compared method to be adjudged high performance. Looking at the values for the
respective in - control ARL, (i.e. 200.3049, 200.0333 and 200.3388) the conclusion is that no
one outperforms the other because they have approximately the same value of 200. All other
rows except for the first row in the table explain how fast each method detects out of control
situation when there is a shift in the process. The smaller the value the faster and good
such method is in detecting shift. Note that SDRL, MRL and Percentiles columns in Table
3 are only meant to substantiate the validity of the ARL column as shown in the various
Figures. Figures 1 6 shows the results obtained when the three methods (F-Distribution T 2,
Bootstrap T 2 and BMEWMA) are compared using ARL, SDRL, MRL and PRL between
control charts. A critical look at the tables and figures shows that BMEWMA has the ability
to detect small shift, followed by Bootstrap T 2 and F-Distribution T 2 with the ability to
detect large shift. Also, results from the various graphs shows that the proposed bootstrap
control charts outperforms the F-distribution control chart in terms of ARL, SDRL, MRL
and PRL.

4. Conclusion

This study critically looked at the performance of the bootstrap Hotelling’s T 2 and
BMWEMA control charts whether or not the underlying distribution is known, and the
assumption of normality is satisfied. Using an empirical data set, the bootstrap results ob-
tained in this study at different mean shift levels has been shown to be better than the
existing method when compared.

Generally, out of control ARL, SDRL, MRL and PRL decrease with the increase of the
shift magnitude as shown in Tables 2 & 3 and Figures 1 6. The BMEWMA detects a
shift at least as quick as both the F-distribution T 2 and the Bootstrap T 2 charts. This
is expected since the smoothing parameter (0.1) for the BMEWMA chart was chosen to
detect small shifts. Finally, it was shown that the proposed control charts outperforms the
F-distribution control chart in terms of ARL, SDRL, MRL and PRL as shown in Tables 2
& 3 and Figures 1 – 6. Therefore, the performance of bootstrap control chart obtained in
this study will assist in detecting small shift.
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Appendix

Simulation Code

=========================== 

F-Distribution Hotelling’s T
2
 

======================= 

t2calc<-function (nsim,mu,delta,phi,sig,gam,cv) { 

 #Simulates the run length of the chi-squared chart for VAR(1) data. 

 #Requires the MASS package to be loaded. 

 #nsim is the number of simulations to be run (number of run lengths 

 # to be generated). 

 #mu is the in-control mean vector. 

 #delta is the vector of the mean shift. 

 #phi is the autocorrelation matrix. 

 #sig is the error covariance matrix. 

 #gam is the cross-covariance matrix. 

 #cv is the upper control limit of the chart. 

 #Fix the mean vector to work in the following calculations. 

 mu<-t(t(mu)) 

 #Initialize the run length vector and Z vector for individual Z values 

 # at each time point. 

 rl<-matrix(0,nsim,1) 

 Z<-matrix(0,1,length(mu)) 

 #Create the 0 mean vector for the calculation of the error terms. 

 mu3<-matrix(0,2,1) 

 #Create the shifted mean. 

 mu2<-mu+t(t(delta)) 

 #Perform the simulation to simulate each run length. 

 for(i in 1:nsim) { 

 k<-1 #Start the count of time points until signal. 

 #Check the first time point. 

 #Generate the first VAR(1) data vector. 

 y<-mu2+t(t(mvrnorm(1,mu3,sig))) 

 #Calculate the charting statistic. 

 t2<-t(y-mu)%*%solve(gam)%*%(y-mu) 

 #Continue until the statistic is above the control limit. 

while(t2<cv) { 

 k<-k+1 

 y<-mu2+phi%*%(y-mu2)+mvrnorm(1,mu3,sig) 

 t2<-t(y-mu)%*%solve(gam)%*%(y-mu) 

 } 

 rl[i]<-k 

 } 

 #Return the vector of simulated run lengths. 

 return(rl) 

 } 

 sink("ans4") 

 ans4=function(){ 

 library(MASS) 

 nsim=10000 

 mu=c(0,0) 

 delta=c(0,0) 

 phi=matrix(c(0.0644,0.1322,0.1482,0.0644),2,2) 

 sig=matrix(c(1,0.9806,0.9806,1),2,2) 

 gam=matrix(c(3.9767,0.0649,0.0649,2.0603),2,2) 

 cv=5.8801 

 t2calc(nsim,mu,delta,phi,sig,gam,cv) 

  } 

ans4() 
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Bootstrap Hotelling’s T
2
 

==================== 

t2calc<-function (nsim,mu,delta,phi,sig,gam,cv) { 

 #Simulates the run length of the chi-squared chart for VAR(1) data. 

 #Requires the MASS package to be loaded. 

 #nsim is the number of simulations to be run (number of run lengths 

 # to be generated). 

 #mu is the in-control mean vector. 

 #delta is the vector of the mean shift. 

 #phi is the autocorrelation matrix. 

 #sig is the error covariance matrix. 

 #gam is the cross-covariance matrix. 

 #cv is the upper control limit of the chart. 

 #Fix the mean vector to work in the following calculations. 

 mu<-t(t(mu)) 

 #Initialize the run length vector and Z vector for individual Z values 

 # at each time point. 

 rl<-matrix(0,nsim,1) 

 Z<-matrix(0,1,length(mu)) 

 #Create the 0 mean vector for the calculation of the error terms. 

 mu3<-matrix(0,2,1) 

 #Create the shifted mean. 

 mu2<-mu+t(t(delta)) 

 #Perform the simulation to simulate each run length. 

 for(i in 1:nsim) { 

 k<-1 #Start the count of time points until signal. 

 #Check the first time point. 

 #Generate the first VAR(1) data vector. 

 y<-mu2+t(t(mvrnorm(1,mu3,sig))) 

 #Calculate the charting statistic. 

 t2<-t(y-mu)%*%solve(gam)%*%(y-mu) 

 #Continue until the statistic is above the control limit. 

 while(t2<cv) { 

 k<-k+1 

 y<-mu2+phi%*%(y-mu2)+mvrnorm(1,mu3,sig) 

 t2<-t(y-mu)%*%solve(gam)%*%(y-mu) 

 } 

 rl[i]<-k 

 } 

 #Return the vector of simulated run lengths. 

 return(rl) 

 } 

 sink("ans1") 

 ans1=function(){ 

 library(MASS) 

nsim=10000 

mu=c(0,0) 

delta=c(0,0) 

 phi=matrix(c(0.0644,0.1322,0.1482,0.0644),2,2) 

 sig=matrix(c(1,0.0226,0.0226,1),2,2) 

 gam=matrix(c(3.9767,0.0649,0.0649,2.0603),2,2) 

 cv=4.3135 

 t2calc(nsim,mu,delta,phi,sig,gam,cv) 

  } 

ans1() 
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Bootstrap MEWMA 
=================  

mewcalc<-function (nsim,mu,delta,phi,sig,gam,r,cv) {  

#Simulates the run length of the MEWMA chart for VAR(1) data.  

#Requires the MASS package to be loaded.  

#nsim is the number of simulations to be run (number of run lengths to be 

#generated).  

#mu is the in-control mean vector.  

#delta is the vector of the mean shift.  

#phi is the autocorrelation matrix.  

#sig is the error covariance matrix.  

#gam is the cross-covariance matrix.  

#r is the parameter of the MEWMA chart.  

#cv is the upper control limit of the chart.  

#Fix the mean vector to work in the following calculations.  

mu<-t(t(mu))  

#Initialize the run length vector and Z vector for individual Z values  

# at each time point.  

rl<-matrix(0,nsim,1)  

Z<-matrix(0,1,length(mu))  

#Create the 0 mean vector for the calculation of the error terms.  

mu3<-matrix(0,2,1)  

#Create the shifted mean.  

mu2<-mu+t(t(delta))  

#Perform the simulation to simulate each run length.  

for(i in 1:nsim) {  

k<-1 #Start the count of time points until signal.  

#Generate the first VAR(1) data vector.  

y<-mu2+t(t(mvrnorm(1,mu3,sig)))  

#Calculate the sigma matrix for the MEWMA statistic.  

sigz<-(r/(2-r))*(1-(1-r)^2)*gam  

#Calculate the initial z value.  

z<-mu3  

#Calculate the charting statistic.  

mew<-t(z)%*%solve(sigz)%*%z  

#Continue until the statistic is above the control limit.  

while(mew<cv) {  

k<-k+1 

y<-mu2+phi%*%(y-mu2)+t(t(mvrnorm(1,mu3,sig)))  

sigz<-(r/(2-r))*(1-(1-r)^(2*k))*gam  

z<-r*y+(1-r)*z  

mew<-t(z)%*%solve(sigz)%*%z  

}  

rl[i]<-k  

}  

#Return the vector of simulated run lengths. 135  

return(rl) 

} 

sink("ans3") 

 ans3=function(){ 

 library(MASS) 

 nsim=10000 

 mu=c(0.0,0.0) 

 delta=c(0,0) 

 phi=matrix(c(0.0644,0.1322,0.1482,0.0644),2,2) 

 sig=matrix(c(1,0.0226,0.0226,1),2,2) 

 gam=matrix(c(3.9767,0.0649,0.0649,2.0603),2,2) 

r=0.1 

cv=4.0512  

 mewcalc(nsim,mu,delta,phi,sig,gam,r,cv) 

  } 

ans3() 
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