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There has been growing interest in exploiting potential forecast gains from the nonlinear structure
of autoregressive time series. Several models are available to fit nonlinear time series data.
However, before investigating specific nonlinear models for time series data, it is desirable to have
a test of nonlinearity in the data. And since most of real life data collected are non-stationary,
there is need to investigate which of these test is suitable for stationary and non-stationary data.
Statistical tests have been proposed in the literature to help analysts to check for the presence of
nonlinearities in observed time series, these tests include Keenan and Tsay tests, and they have
been used under the assumption that data is stationary. However, in this paper, we investigated
the performance of these two tests for the stationary and non-stationary data. The effect of the
stationarity and non-stationarity were studied on simulated data based on general class of linear
and nonlinear autoregressive structures using R-software. The powers of tests were compared at
different sample sizes for the two cases. It was observed that the Tsay F-test performed better
than Keenans tests with little order of autoregressive and increase in sample size when data is
non-stationary and vice-versa when data is stationary. Finally, we provided illustrative examples
by applying the statistical tests to real life datasets and results obtained were desirable.
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1. Introduction

Several techniques used in time series modeling assume linear relationships among variables.
However, in some cases, variations in data do not show simple linearity and therefore, are
difficult to analyse and predict accurately. Hence, for such data, it would not be practicable
to expect a single, linear model to capture these distinct behaviours. Linear relationships
and their combinations for describing the behaviour of such data are often found to be
grossly inadequate. In general time series analysis, it is known that there are large numbers
of nonlinear features such as cycles, thresholds, bursts, chaos, heteroscedasticity, asymme-
tries and combinations of one or more of these. Tong (1990), Franse, and van Dijk (2000)
and Tsay (2010) have presented the various types of models that can be cast into these
forms.

Nowadays, there are various applications of nonlinear time series models to different
fields, such as meteorology, finance, engineering and econometrics. The nonlinear time se-
ries models have been used extensively in recent years for modeling time series data that
cannot be adequately represented using linear models. Hipel and McLeod (1994) hypothe-
sized that, although a linear model may be adequate to describe average annual river flows,
the relationship between daily river flow and precipitation may be nonlinear. For examples,
Tong (1990) provides an introduction to different types of nonlinear time series modeling
primarily in the univariate setting. Chen and Tsay (1993, 1996) and Lewis and Ray (1997)
investigated techniques for obtaining bivariate nonlinear models. Terasvirta (1993) men-
tioned vector nonlinear autoregressive processes, vector nonlinear average processes and
multiple bilinear time series models in passing but concentrated on statistical inference for
nonlinear models using parametric procedure.
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Before fitting a nonlinear time series model to a given set of data, it is good if the
nonlinearity characteristics of the data can be detected. There are various tests that have
been suggested over the past years to distinguish linear from the nonlinear data sets. For
example, Hunnich (1982) used the bispectrum test. They used the fact that the square
modulus of normalized bispectrum is constant when the time series is linear. The hypothesis
is based on the non-centrality of parameters of the marginal distribution of the square
moduli, where n is the sample size. Yuan (2000) modified the Hunnichs test in such a way
that the parameter being tested under the null hypothesis is the location parameters, such
as the mean or variance.

The problem of nonlinear time series identification and modelling has attracted consider-
able attention for years in diverse fields such as biometrics, socioeconomics, transportation,
electric power systems, and finance which exhibit nonlinear process. A good nonlinear
model should be able to capture some of the nonlinear phenomena in the data. Once a
model is selected, sufficiently strong evidence need to be found in the data to abandon the
linear model. Therefore, good statistical and diagnostic tests are needed to determine the
nonlinearity in time series data.

This work examined the performance of two nonlinearity tests in time series analysis; these
are Kennan’s test and F-test of nonlinearity. The power efficiency of each test was studied
on different sample size, models and under the violation of assumption of stationarity based
on simulated data and real data collected.

In Statistics, a stationary process is a stochastic process whose joint probability distribu-
tion does not change when shifted in time. Consequently, parameters such as the mean and
variance, if they are present, also do not change over time. The most important assumption
made about time series data is that of stationarity.

The basic idea of stationarity is that the probability laws that govern the behavior of
the process do not change over time. In indeed, the process is statistically equilibrium.
Specifically, a process {Yt} is said to be strictly stationary if the joint distribution of Yt
is the same as that of Yt−k for all t and k; t = 1, 2, · · · , k. In other words, the Y’s are
(marginally) identically distributed (see Jonathan and Kung-Sik, 2008). It then follows
that E(Yt) = E(Yt−k) for all t and k so that the mean function is constant for all time.
Additionally, var(Yt) = var(Yt−k) for all t and k so that the variance is also constant over
time.

1.1 Linear Time Series Model

A relationship of direct proportionality that, when plotted on a graph, traces a straight line.
In linear relationships, any given change in an independent variable will always produce a
corresponding change in the dependent variable. For example, a linear relationship between
production hours and output in a factory determines percentage of increase or decrease of
the output. The concept of linear relationship suggests that two quantities are proportional
to each other: doubling one causes the other to double as well.

Linear relationships are often the first approximation used to describe any relationship,
even though there is no unique way to explain what a linear relationship is in terms of
the underlying nature of the quantities. For example, a linear relationship between the
height and weight of an object is different from a linear relationship between the volume
and weight of an object. The second relationship makes more sense, but both are linear
relationships, and they are, of course, incompatible with each other. Medications, especially
for children, are often prescribed in proportion to weight. This is an example of a linear
relationship. The linear time series modeling depends on the type of system that generates
the data. Time series analysis may be Autoregressive Models, Moving Average Model or
Autoregressive Moving Average Model (ARMA). However For the purpose of this research
work we considered only general classes of second order auto regressive models.
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1.2 Nonlinear Time series Model

Practitioners in many elds are increasingly faced with real data possessing nonlinear at-
tributes. It is known that stationary Gaussian autoregressive models are structurally deter-
mined by their rst two moments. Consequently, linear autoregressive models must be time
reversible. Many real datasets are time irreversible, suggesting that the underlying process
is nonlinear. Indeed, in Tongs seminal paper on threshold models, he would argue that
no linear Gaussian model could explain the cyclical dynamics observed in sections of the
lynx data (Tong and Lim, 1980). Furthermore, he argued that characteristics of nonlinear
models, such as time irreversibility and limit cycles, mandated the development of practi-
cal nonlinear models to help resolve ongoing diculties in real data. Tongs explanation and
application of locally linear threshold models introduced striking opportunities for model
building strategies.

The pioneering work in time series modeling is due to Wiener who had produced a very
general class of nonlinear model, called Volterra series expansion and is generally given as
follows.

Xt = µ+

∞∑
i=−∞

αiXt−i +

∞∑
i,j=−∞

αijXt−iXt−j +

∞∑
i,j,k=−∞

αijkXt−iXt−jXt−k + · · · (1)

Xt = µ+

∞∑
i=−∞

βiet−i +

∞∑
i,j=−∞

βijet−iet−j +

∞∑
i,j,k=−∞

βijket−iet−jet−k + · · · (2)

where µ is the mean level of Xt, et (−∞ < t < ∞) is a strictly stationary process of
independent and identically distributed random variables. Obviously, Xt is nonlinear if one
of the higher order coefficients αij , αi,j,k, βij or βijk is non zero (Ibrahim et al, 2005).

For instance, the model 1 and 2 above can be illustrated with simple structures (i, j =
1, 2, k = 0) as follows;

Xt = µ+

2∑
i=1

αiXt−i +

2∑
i=1

2∑
j=1

αijXt−iXt−j

⇒ Xt = µ+ α1Xt−1 + α2Xt−2 + α11X
2
t−1 + α12Xt−1Xt−2 + α22X

2
t−2 (3)

Xt = µ+

2∑
i=1

αiet−i +

2∑
i=1

2∑
j=1

αijet−iet−j

⇒ Xt = µ+ α1et−1 + α2et−2 + α11e
2
t−1 + α12et−1et−2 + α22e

2
t−2 (4)

Most linear models can be expressed into Volterra expansion form which includes the au-
toregressive model of order p, [AR(p)], the moving average model of order q [MA(q)] and
the autoregressive moving average model of order p and q [ARMA(p, q)].
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2. Materials and Methods

Several authors such as Chan and Tong(1986) and Tsay (1986) raised the issue that one
nonlinearity test is not enough to detect nonlinearity in a data set. Nonetheless, it is ex-
pected that the nonlinearity test will suggest whether a data set is linear or otherwise.
Thus, if any test does suggest that the data is nonlinear, we expect that a nonlinear model
will improve the modeling of the data set.

Indeed, in this work, a set of data were generated from model 1–4, under the assumption of
stationarity stated earlier and the two tests, Keenan and F-tests of nonlinearity were applied
to see the behavior of their acceptance of nonlinearity. Thereafter, another set of data were
generated under the violation of the stationarity and white noise assumptions. Each test is
subjected to 500 replication simulation at different sample sizes for stationarity and non-
stationarity data structures. Both tests are based on time domain approach and suitably
applied on data generated from selected linear and nonlinear auto regressive models. Power
efficiency of the tests was compared on the simulated data.

2.1 Keenan’s test

Keenan adopted the idea of Turkey one degree of freedom test for non-additivity to derive a
time domain statistic. The test is motivated by similarity of Volterra expansions to polyno-
mials, and is extremely simple, both conceptually and computationally. Assume that a time
series Yt, t = 1, 2, · · · , n, can be adequately approximated by order of Volterra expansion
in 1 and 2.

The approximation will be linear if the second and other higher terms on the right hand
side are zero. The Keenan’s test procedure is as follows;

(i) Regress Yt on (1, Yt−1, · · · , Yt−m) and calculate the fitted values (Yt), and the resid-
uals, (êt), for t = m+ 1, · · · , n, and the residual sum of squares

∑
e2s.

(ii) Regress Y 2
t on (1, Yt−1, · · · , Yt−m) and calculate the residual (et) for t = m, · · · , n,

(iii) Regress on ê = em+1, · · · , en on ξ̂m+1, · · · , ξ̂n and obtain η̂ and F̂ from

η̂ = η̂0

(
n∑

t=m+1

ξ̂2t

)

where η̂0 is the regression coefficient, and

Fk =
η̂(n− 2m− 2)∑n
t=m+1 ξ̂

2
t − η̂2

Follows approximately F1,n−2M−2, where the degrees of freedom of associated with∑n
t=m+1 ξ̂

2
t is (n−M)−M − 1.

Keenan’s test is based on the argument that if any of cij and other higher coefficients in 1
and 2 are non-zero, e.g c12, then this nonlinearity will be distributionally reflected in the
diagnostics of the fitted linear model, if the residuals of the linear model are correlated with
Yt−1Yt−2. As in Turkey non additive test, Keenan’s test used the aggregated quantity Y 2

t ,
the square of the fitted value of Yt based on the fitted linear model, to obtain the quadratic
terms upon which the residual can be correlated. The idea is extremely valuable when the
sample size is small because it only requires one degree of freedom.
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2.2 Tsay-test

Tsay (1986) modifies Keenan,s test by replacing the aggregated quantity Y 2
t by the dis-

aggregated variable Yt−iYt−j , i, j = 1, · · · ,M , where M is defined in Keenan’s test. The
F-test procedure is as follows:

(i) Regress Yt on (1, Yt−1, · · · , Yt−m) and calculate the fitted values (Yt), and the resid-
uals, (êt), for t = M + 1, · · · , n. The regression model is denoted by

Yt = Wtφ+ et, where Wt = (1, Yt−1, · · · , Yt−m) and φ = (φ0, φ1, · · · , φm)T .

(ii) Regress vector Zt on (1, Yt−1, · · · , Yt−m) and calculate the residuals (Xt), for t =
M + 1, · · · , n. In this step, the multivariate regression model is Zt = WtH + Xt,
where Zt is an m = dimensional vector defined by ZT

t = V ech(UT
t Ut) with Ut =

(Yt−1, · · · , Yt−m), and vech denotes the half stacking vector.
(iii) Fit

êt = X̂tβ + εt, t = M + 1, · · · , n

and define

F̂ =

∑
X̂T

t êt(
∑

X̂T
t X̂t)−1

∑
X̂T

t êt
m∑
e2t

n−M−m−1

where the summation is over t from M+1 to n. Here, F̂ is asymptotically distributed
as Fm,n−m−M−1.

2.3 Models selected for simulation

Data is generated from several linear and nonlinear second orders of general classes of
autoregressive models given below:

Model 1. AR(2): Yti = 0.3Yti−1 − 0.6Yti−2 + et

Model 2. TR(2): Yti = 0.3 sin(Yti−1)− 0.6 cos(Yti−2) + et

Model 3: EX(2): Yti = 0.3Yti−2 + exp(−0.6Yti−2) + et

Model 4: PL(2): Yt = 0.3Y 2
t−1 − 0.6Yt−2 + et

Yti ∼ N(0, 1) and eti ∼ N(0, 1) for stationary series and Yti ∼ N(2000, 20) and eti ∼
N(1000, 10), t = 1, 2, · · · , 50, 150 and 300, i = 1, 2, · · · , 3000.

The model 1, 2, 3 and 4 are linear, trigonometry, exponential and polynomial autoregres-
sive models respectively with coefficients of Yt−1 being 0.3 and Yt−2 being −0.6. Simulation
studies were conducted to investigate the performance of Keenan’s and F-test. The hypoth-
esis test were null hypothesis of nonlinearity against the alternative hypothesis of linearity
of data. Thus, if the data is linear with = 0.05, more than 95% of the replicates are expected
to have the test statistic less than the critical values. Power of the two tests is compared
for the different models, sample size and distributions to know which of the two tests is
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acceptably good for detecting nonlinearity for time series data generated from the given
model.

Note that in autoregressive modeling, the innovation (error), et process is often specified
as independent and identically normally distributed. The normal error assumption implies
that the stationary time series is also a normal process; that is, any finite set of time
series observations are jointly normal. For example, the pair (Y1, Y2) has a bivariate normal
distribution and so does any pair of Y ’s; the triple (Y1, Y2, Y3) has a trivariate normal
distribution and so does any triple of Y ’s, and so forth. Indeed, this is one of the basic
assumptions of stationary data. However, in this study, the data will be generated under
white noise assumption of stationarity and when the stationarity assumption is violated for
order of past responses and random error terms to see behavior of the models in each case.
3000 replications were used to stabilize models estimations at different combinations of n
and models.

2.4 Selection rule

The average acceptance of linearity by each test was recorded as in Table 1-4 (see Ap-
pendix), at n = 50, 150 and 300 representing small, mild and large samples respectively
for each case (stationarity and non-stationarity) and model. The test with highest propor-
tion of acceptance in a category is the best for that category. Note that only second order
autoregressive models were considered in each case and situation.

3. Results and Discussions

3.1 Relative performance of Keenan- and F-tests for detecting linear and
nonlinear general class of stationary autoregressive cases at different
sample size

The performance of the following Keenan- and F-tests in detecting general classes of linear
and nonlinear autoregressive cases were examined at sample size of 50, 150, and 300 which
represent small, mild and large sample sizes respectively. The data were simulated using
R statistical software following the assumption of stationarity earlier stated to fix the pa-
rameters. The parameters were fixed for each model as shown in model 1-4 to observe how
the tests would accept the null hypothesis of linearity of stationary data. The white noise
assumption of the error term was also observed to make the data simulated be stationary.
Each created data were replicated 1000 times using TSA Package in R software.

3.2 Relative performance of Keenan- and F-tests for detecting linear and
nonlinear general class of non-stationary autoregressive cases at
different sample size

One of the objectives of this study is to find out the performance of Keenan and F-test
of nonlinearity on general classes of linear and nonlinear autoregressive, simulated with
violation of assumption of non-stationarity. Since most of real life data collected are non-
stationary, there is need to investigate which of these tests is suitable for non-stationary
data. One major assumption of stationarity is validity of white noise assumption of error
term; the error term is independently distributed with zero mean and positive variance.

Indeed, in this work non-stationarity was injected in our simulated data from different
models used for the simulation by violating the independence and normality assumption
of error term in the following way to know the effect of non-stationarity on each model at
different sample sizes: the results are displayed in Table 5-8 (see Appendix) Yt ∼ N(2000, 20)
and et ∼ N(1000, 10).
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The value of mean and variance were specified based on the history of nature of real life
data considered, Data on Nigeria Gross Domestic Products (GDP).

Tables 1-8 (see Appendix) show the results of analyses of performance of Keenan’s test
and F-test with respect to the model 1-4 at small, mild and large sample sizes taken to
be 50, 150 and 300 respectively under the assumption of stationarity and violation of the
assumption of stationarity. The two tests were compared at the 5% level of significance for
two tailed test in each case. The average powers of the tests for both tests were computed
for easy comparison.

We noticed that both test do not reject the linearity of the Model 1, linear autoregressive
at different sample sizes. However, F-test has higher power of acceptance than Keenan
test when data is stationary while Keenans test performs better for non-stationary data
especially at large sample size. In model 2-4, trigonometric, exponential and polynomial
auto regressive models respectively, most of the average p-value are less than the 5% level of
significance and as the sample size increases the p-value decreases indicating the significant
of linearity of the models by the two tests. Meanwhile, the F-test perform better as its
average p-values are less than Keenan’s test at the three sample sizes for stationary data
and vice versa for non-stationary data as shown in the summary table 4 and 8.

4. Conclusion

Both tests wrongly accept the null hypothesis of linearity for model 2, 3, and 4 with their
average p-values greater than 5% level of significance at sample size 50 for stationary data.
When the non-stationarity was introduced in data generated F-tests p-value were greater
than 5% and therefore wrongly accept the null hypothesis of linearity of nonlinear autore-
gressive model except that of polynomial model which its linearity was rightly rejected and
more powerful when the sample size increases. While Keenans test has the p-value close to
zero which show the significant of linearity of the three nonlinear models at the three sample
sizes and therefore considered as the most powerful test for non-stationary data. Finally,
we provided illustrative examples by applying the statistical tests to real life datasets and
results obtained are desirable.
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Appendix

Table 1: Empirical frequencies of rejection of the null hypothesis of linearity;  
n =50 and 1000 replications. Nominal significance level, 0.05 (Stationary Data) 

 
Model   Keenan’s Test   F-Test 
 
Model 1  0.8505    0.6198 

Model 2  0.6449    0.5046 

Model 3  0.6756    0.0283 

Model 4  0.0033    0.0005 

___________________________________________ 

 

Table 2: Empirical frequencies of rejection of the null hypothesis of linearity;  

n =150 and 1000 replications. Nominal significance level, 0.05(Stationary Data) 

 
Model   Keenan’s Test   F-Test 
 
Model 1  0.4731    0.9280 

Model 2         0.0514    0.0414  

Model 3  0.0088    0.0062 

Model 4  0.0012    0.0000 

___________________________________________ 

 
Table 3: Empirical frequencies of rejection of the null hypothesis of linearity;  
n =300 and 1000 replications. Nominal significance level, 0.05(Stationary Data) 

 
Model   Keenan’s Test   F-Test 
 
Model 1  0.5179    0.8706 

Model 2  0.0735    0.0179 

Model 3  0.0169    0.0061 

Model 4  0.0000    0.0000 

___________________________________________ 
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Table 4: Effect of Sample size on the Power of the Tests for model 1-4 
  Nominal significance level, 0.05 (Stationary Data) 
 

Model Sample Size Model 1 Model 2 Model 3 Model 4 

Keenan 50 
150 
300 

0.6198 
0.4731 
0.5179 

0.6449 
0.0514 
0.0735 

0.6756 
0.0088 
0.0169 

0.0033 
0.0012 
0.0000 

F-test 50 
150 
300 

0.8505 
0.9280 
0.8706 

0.5046 
0.0414 
0.0179 

0.0283 
0.0062 
0.0061 

0.0005 
0.0000 
0.0000 

 

Table 5: Empirical frequencies of rejection of the null hypothesis of 
linearity; n =50 and 1000 replications. Nominal significance level, 0.05 
(Non-stationary Data) 

 
Model   Keenan’s Test   F-Test 
 
Model 1  0.3697    0.4607 

Model 2  0.000     0.3072 

Model 3  0.0000    0.3123 

Model 4  0.0000    0.0034 

____________________________________________ 

 
Table 6: Empirical frequencies of rejection of the null hypothesis of  
linearity; n =150 and 1000 replications. Nominal significance level, 0.05 
(Non-stationary Data) 

 
Model   Keenan’s Test   F-Test 
 
Model 1  0.3840    0.2088 

Model 2             0.0000    0.7596  

Model 3  0.0000    0.3953 

Model 4  0.0000    0.0017 

____________________________________________ 
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Table 7: Empirical frequencies of rejection of the null hypothesis of 

linearity;  

n =300 and 1000 replications. Nominal significance level, 0.05 (Non-

stationary Data) 

 

Model   Keenan’s Test   F-Test 

 

Model 1  0.9811    0.0819 

Model 2  0.0000    0.2931 

Model 3  0.0169    0.0061 

Model 4  0.0000    0.0000 

______________________________________ 

 

Table 8: Effect of Sample size on the Power of the Tests for model 1-4 

Nominal significance level, 0.05 (Non-stationary Data) 

 

Model Sample Size Model 1 Model 2 Model 3 Model 4 

Keenan 50 

150 

300 

0.3697 

0.3840 

0.9811 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

F-test 50 

150 

300 

0.4607 

0.2088 

0.0819 

0.3072 

0.7596 

0.2931 

0.3123 

0.3953 

0.7670 

0.0034 

0.0017 

0.0000 

 

Table 9:  Results of Nonlinearity Tests on Nigeria GDP 

 

Test   Test Statistic   Critical value   Conclusion 

 

Keenan’s Test  10.9823    0.0052   Nonlinear 

F-Test   8.0797    0.0293   Nonlinear 
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