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In this paper, we derived an expression for the variance of treatment means in a split plot
design with sampling using the variance components associated with the whole plot, split plot
and sampling errors. The result from the data analysis shows that relative efficiency increases
with increase in sample size while variance of treatment means decreases with increase in sample
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1. Introduction

Sample size is an imperative feature of any empirical study in which the goal is to make
inferences about a population from a sample. It is important that a study has an adequate
sample size. It must be large enough that an effect of such magnitude as to be of scien-
tific significance will also be statistically significant. It is just as important, however, that
the study not be too large where an effect of little scientific importance is nevertheless
statistically detectable (Russell, 2001). This is necessary to ensure that the study has a
good chance of detecting a statistically significant result and also to ensure that adequate
resources are allocated. A study that has an inadequate sample size will have a low probabil-
ity of detecting a statistically significant result and therefore represents a waste of valuable
resources and add nothing to scientific knowledge. In practice, the sample size used in a
study is determined based on the expense of data collection, and the need to have sufficient
statistical power (Cohen, 1977). Increasing sample size leads to increase in statistical power
and decrease in error rate (Caimiao et al., 2004). A sufficiently large sample size leads to
more precise information, avoids the bias obtained by choosing a non-representative subset
of samples, and also increases the reliability of conclusions, thus reducing uncertainty in
results (Russell, 2001). On the other hand, an insufficient sample size will give a result
which may not be sufficient to detect a difference between the groups and the study may
own out to be incorrect leading to a type II error (Jonathan et al., 2005). It also wastes
time and money as the result will be variably inconclusive. The sample size is decided ar-
bitrarily based on the researchers convenience, available time, and resources, resulting in
lack of precision due to insufficient number of subjects studied (Barun, 2010).

The variance of treatment means or error is the average of the square variations of each
population mean from the grand mean. Braun (2012) described it the variation which exists
between treatment means. When populations are grouped, it helps to decide if variability
between and within each populations are significantly different as evaluated by Martin
and Naomi (2014), and Anwesha (2012). Efficiency is a term used in the comparison of
various statistical procedures and, in particular, it refers to a measure of the optimality of
an estimator of an experimental design, or of a hypothesis testing procedure. The relative
efficiency of two experimental designs is the ratio of their efficiency statistics, although this
term is often used where the comparison is made between a given design and a notional
’best possible’ design (Nikulin, 2001). The relative efficiency of two designs theoretically
depends on the available sample size. This implies that there is a significant effect of sample
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size on the relative efficiency of experimental designs. The objectives of this paper are to
derive an expression for the variance of treatment means in a split plot design, and also to
determine the effect of sample size on variance of treatment means and relative efficiency.

2. Definition of Split-Plot Design with Sampling

Suppose an experiment was carried out with r replications of a whole-plot treatments (A)
and another set of b treatments referred to as the split-plot treatments (B) were randomly
assigned to the ar whole-plot and n random samples are taken from each of the abr plots.
The model for the observation denoted by Yijkl of the lth sample from the ith whole-plot
and jth split-plot treatments on the kth replication is given by:

Model:

Yijkl = µ+ ρk +Ai + Eik +Bj + (AB)ij + Eijk + Eijkl (1)

where Yijkl = observed response from the lth sampling of the jth split plot treatment,
ith whole plot treatment and the kth replication; µ = overall mean; ρk effect of the kth
replication; Ai = ith level of the whole plot treatment; Eik = whole plot error; Bj = jth
level of the split plot treatment; (AB)ij = interaction between whole plot and split-plot
treatments; Eijk = split plot error and Eijkl = the sampling error. The components Eik,
Eijk and Eijkl in (1) are random variable with means equal to zero and variances equal to
σ2
a, σ2

b and σ2
n respectively, known as variance components.

The Analysis of Variance (ANOVA) table resulting from this experiment is presented in
Table 1; where E1, E2 and E3, are mean square for the whole plot, split plot and sampling,
respectively, and a denotes the whole-plot level, r denotes the number of replication, n
denotes the size of the sampling and b is the split plot level.

Table 1. Analysis of variance table for split-plot design with sampling
Source of Variation Degrees of Freedom Mean Expected Mean

Square Square
Replications r − 1

Whole plot (A) treatment a− 1
Whole plot Error (E1) (r − 1)(a− 1) E1 bnσ2

a + nσ2
b + σ2

n

Split plot (B) treatment (b− 1)
Interaction between whole plot
and split plot treatments (AB) (a− 1)(b− 1)

Split plot Error (E2) a(b− 1)(r − 1) E2 nσ2
b + σ2

n

Sampling errors (E3) abr(n− 1) E3 σ2
n

Total abrn− 1

3. Estimation of Variance Components, Variance of Treatment Mean and
Relative Efficiency

3.1 Variance components

The variance components σ2
a, σ2

b and σ2
n are estimated using the ANOVA method. The

ANOVA method of estimating variance components consists of equating mean squares to
their respective expected values and solving the resultant equations for the variance com-
ponents (Sahai and Ojeda, 2003). From Table 1, equating mean squares to their respective
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expected mean squares we have: E1 = σ̂2
n +nσ̂2

b + bnσ̂2
a; E2 = σ̂2

n +nσ̂2
b and E3 = σ̂2

n. These
give the following estimators:

σ̂2
n = E3 (2)

σ̂2
b =

E2 − E3

n
(3)

σ̂2
a =

E1 − E2

bn
(4)

where σ̂2
n, σ̂2

b and σ̂2
a, respectively are the estimate of the variance component for sampling,

split plot and whole plot.

3.2 Variance of treatment means

Based on the assumptions made for the random variables, Eik, Eijk and Eikjl, in (1), we
obtain the estimate for variance of treatment means denoted by V as:

V =
σ̂2
a

ar
+
σ̂2
b

ar
+

σ̂2
n

arn
(5)

substituting (2), (3), and (4) into (5), the estimated variance of treatment mean per sample
basis will be:

V =
E1 + E2(b− 1)

abrn
(6)

Similarly, by varying the values of n sample per plot the estimated variance of treatment
mean denoted by Vn is:

Vn =
σ̂2
a

ar
+
σ̂2
b

ar
+

σ̂2
n

arn′
=
E1 + E2(b− 1)

abrn
+
E3

ar

[
1

n
− 1

n′

]
(7)

where n′ is the altered values of n.

3.3 Relative efficiency

The relative efficiency (E) is the amount of gain in information by sampling (Vn) relative
to complete observation (V ), that when n is one. This is obtained by taking the ratio of
the amount of information by sampling (Vn)−1 to the amount of information from complete
observation (V )−1; this results to:

E =
V

Vn
(8)

where V is the variance of treatment mean (complete observation) and Vn is the sampling
variance of treatment mean.
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4. Results and Discussion

The data used in this work were adopted from (Montgomery, 2001). The experiment was
carried out in a split plot design with three replicates to study the effect of three different
pulp preparation methods (whole-plot treatment) and four different cooking temperature
(split plot treatment) for the pulp on the tensile strength of paper. The data are shown in
Table 2 (see Appendix), where the number of sampling n = 1, a = 3, b = 4 and r = 3. In
order to determine the effect of sampling size on variance of treatment means and relative
efficiency, we use data in Table 2, by increasing the values of n. Using (2), (3), (4), (6), (7)
and (8), the results in Table 3 (see Appendix) were obtained.

The results in Table 3 show that when the size of the sampling unit equals one (1), the
variance component of the sampling unit becomes zero (0), which makes the effect of the
sample size on the variance of treatment mean almost insignificant. When the size of the
sampling unit is greater or equal to two (2), the effect of the sample size becomes clear,
because as the size of the sampling unit increases from two (2), and above, the variance
of treatment mean decreases significantly. Furthermore, the relative efficiency which is ob-
tained by taking the ratio of various combinations of variance of treatment mean increases
significantly as the sample size increases. This implies that there is a significant effect of
sample size on the relative efficiency of experimental designs.

5. Conclusion

We conclude that in order to reduce variation among treatment means, and increase relative
efficiency which the amount of gain in information in any given experiment, the sample size
should be increased.
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Appendix

Table 2: The experiment on the tensile strength of paper 
 

  Replicate 1         Replicate 2          Replicate 3 

Preparation 
method              1      2 3 1 2 3 1 2 3 

Temperature (oF) 
200 30 34 29 28 31 31 31 35 32 
225 35 41 26 32 36 30 37 40 34 
250 37 38 33 40 42 32 41 39 39 
275 36 42 36 41 40 40 40 44 45 

 
 
Table 3: Estimated variances of treatment mean and relative efficiency for 
specified sampling size 
 

Sampling 
size 

Total 
observation 

 
 

 
Variance Component 

 
 
 

Variance of  
treatment  
mean 

Relative 
efficiency (E) 

n N 
     Vn 

n

V
E

V
  

1 36  1.561 2.824 0  0.4872 1 
2 72  6.8699 7.8525 4.031  1.642 0.2967 
3 108  1.3 4.39 4.116  0.6365 0.7654 
4 144  0.4034 0.5526 7.2285  0.1118 4.3578 
5 180  0.324 0.1536 5.7661  0.0206 23.65 
6 216  0.2753 0.1331 5.4726  0.0103 47.301 
7 252  0.1449 0.0763 6.9271  0.0052 93.692 
8 288  0.1386 0.0583 7.9633  0.0028 174 
9 324  0.0962 0.0322 8.4272  0.0013 374.77 
10 360  0.0954 0.0196 8.7973  0.0007 696 

 
 

2

a
2

b
2

n
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