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Ordinary Least Squares (OLS) estimator produces the Best Linear Unbiased Estimate (BLUE) of 
the parameter of linear regression model if the assumptions of normality and constant variance 
of the error terms are satisfied. However, the assumption of the constant error terms across the 
entire observations is frequently violated by real life data. Due to the failure of OLS estimator for 
contaminated data, robust alternatives such as Least Absolute Deviation (LAD) method and M-
estimators are proposed. M-estimators are robust to outliers in the y-direction but fail for x-
outliers. To obtain M-estimator that is robust to outliers in both directions, weights were applied 
to two loss functions ܮ௫ and ܮ௬ to remove the effect of outliers in y and x directions.  The method 
handles both the simple and multiple linear regression models and yields set of solutions that are 
unbiased and efficient. Comparative analysis of the performance of the proposed method with the 
existing methods indicates that the method competes favourably and are particularly more robust 
and efficient than other estimators considered when outliers lie on the X-direction and on both X 
and Y directions. The finite sample performance of the proposed method is studied using Monte 
Carlo simulation. 
Keywords: M-estimator; Monte Carlo simulation; robust linear regression model 

 

1. Introduction        

Regression is a statistical methodology applied to relate a variable of interest, which is 
called the dependent variable or response variable, to one or more predictors 
(independent/regressors) variables. The objective of regression analysis is to build a regression 
model or prediction equation that helps us to describe, predict and control the dependent 
variable on the basis of the independent variables. Our interest, when predicting the dependent 
variable (Y) for a particular set of values of the independent variables (X1, X2, …, Xp), is to 
place a bound on the error of prediction so as to get predicted values with the smallest possible 
error.  

Ordinary Least Squares (OLS) regression estimation relies on assumptions concerning 
the error terms of the model. OLS estimation assumes, among others, that the errors of 
prediction are independently and identically normally distributed, that is, [ݎ ~ N (0, σ2)]. 
Outlying observations, which is common in most life data often leads to violation of this 
assumption (Nevitt & Tam, 1998). It is well demonstrated that outliers in the sample data 
heavily influence estimates using OLS regression, sometimes even in the presence of one 
outlier (Rousseeuw & Leroy, 1987). Manimannan et al. (2020) studied the detection of outliers 
in linear and nonlinear regression models using standardized scores without the use of predicted 
values. The problem of contradiction between the statistical significance and real significance 
of regression parameters when using multiple linear regression analysis was studied (Yahya 

 
1 Corresponding Author; E-mail: ogundele.olaniyi@fupre.edu.ng 



Journal of the Nigerian Statistical Association, Vol. 34, 2022                                                       Ogundele & Ajibade 

88 
 

and Rezami, 2020). They presented an algorithm based on the simple and multiple coefficient 
of determination and the sum of averages to estimate multiple outliers when outliers are real. 
Raj and Kannan (2017) studied the detection and presence of outlying observations in simple 
linear regression model for medical data set.  

If the assumption that the uncertainties (errors) in the data are uncorrelated and 
normally distributed are valid for the data at hand, then for most quantitative experiments, the 
method of least squares is the best linear unbiased estimator (BLUE)  for extracting information 
from a set of data. The method is best in the sense that the parameters determined by the least 
squares analysis are normally distributed about the true parameters with the least possible 
standard deviations (Wolberg, 2006). The choice of estimation method under non-ideal 
conditions has been a long-standing problem for methodological researchers (Nevitt & Tam, 
1998).  

A regression procedure is said to be robust if the presence of contaminated data does 
not impede the procedure’s ability to capture the general trend of the data. This idea is used to 
formulate a measure of the degree of robustness of estimator and it is called the breakdown 
point of a particular regression method. The higher the breakdown point the more resistant the 
estimator is to data contamination. The purpose of this study is to propose a Least Absolute 
Deviation (LAD) estimator that will be robust to outliers in both x and y directions while still 
retaining efficiency for Gaussian errors. Section 2 contains the materials and methods used in 
the study while sections 3 and 4 contain results and conclusion respectively. 
 

2. Materials and Methods 

`Assuming that the relationship between dependent variable (Y) and the independent 
variables (X) can be represented by the general linear regression model 

ݕ = ߚܺ +  (1)                                                                                                                                  ݎ
where ߚ is a (p+1) by 1 column vector of parameters (ߚ = ⋯,ଶߚ,ଵߚ,ߚ ܺ  ,(ߚ, =  (ାଵ)[ݔ]
is the design matrix with n observations for p independent variables where the first column 
contains only element 1 and a column vector ݕ = ⋯,ଶݕ,ଵݕ) ,  )  of n dependent variable. Theݕ
error terms associated with the model are represented by the column vector ݎ = ⋯,ଶݎ,ଵݎ) ,  .(ݎ
We review briefly some of the existing methods used in estimating the parameters of the linear 
regression. 

2.1 Ordinary least squares (OLS) 

The LS criterion can be written as the value of ߚመ  for which ܮ൫ߚመ൯ is a minimum, where 

መ൯ߚ൫ܮ = ݎଶ(ߚመ)


ୀଵ

                                                                                                                        (2) 

with ݎ representing the OLS residuals. OLS estimator is optimal under the classical regression 
assumptions of independent and identically distributed normal errors, as it leads to parameter estimates 
that are BLUE. 
2.2 Robust Regression Methods 

The Least Absolute Deviation (LAD) methods for regression modelling minimises ܮ൫ߚመ൯ where  

መ൯ߚ൫ܮ = ∑ ቚݕ −∑ ఫߚ ݔ

ୀଵ ቚ

ୀଵ                                                                                                                        (3)  
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The problem is transformed into linear program problem which leads to linear programming 
algorithm for computation of LAD estimates. Portnoy and Koenker (1997) used interior point 
methods for solving linear programs with a new statistical pre-processing approach for L1-type 
problems and proposed an interior-point linear programming implementation of the quantile 
regression estimator and its special case, the L1 estimator. LAD is a low-breakdown regression 
estimator because its breakdown is less than 0.5. 

Huber derived M-Estimator using a weight function ρ to down-weight any residuals 
resulting from outlying observations. The regression M-estimates is defined as solution ߚመ  for 
which ܮ൫ߚመ൯ is a minimum, where 

መ൯ߚ൫ܮ = ߩቆ
(መߚ)ݎ
ොߪ ቇ



ୀଵ

                                                                                                           (4) 

where ߪො is some appropriately chosen estimate of ߪ. The choice is generally limited to robust 
measures of scale (Maronna et al., 2006).  A robust estimate of scale that is frequently applied 
is the normalised median absolute deviation (MADN) given by 

ොߪ = 1.4826 ቂ݀݁ܯ∀݅ ቀቚݎ −
݉݁݀
∀݅ ቚቁቃ , ݎ ≠ 0, ݅ =  , 2,⋯ ,݊                                                        (5)  

The ρ -function down-weights observations with scaled residuals that are deemed too large in 
magnitude. Taking derivatives of (4) with respect to ߚመ  leads to p normal equations to be solved 
to determine ߚመ , 

߰ቆ
(መߚ)ݎ
ොߪ ቇܺ = 0



ୀଵ

                                                                                                                (6) 

where ߰ =  ᇱ. These normal equations form a system of nonlinear equations and two methodsߩ
frequently in use to solve the resulting nonlinear equations are Newton-Raphson and Iterated 
Reweighted Least Squares (IRWLS). IRWLS at convergence yields M regression parameter 
estimator that is equivalent to a Weighted Least Squares (WLS) estimator given by 
መߚ  = (ܺᇱܹܺ)ିଵܺᇱܹ(7)                                                                                                                                  .ݕ   

ܹ is an n x n diagonal matrix of observation weights ݓଵ,ݓଶ ,⋯ ݓ, 0 ݁ݎℎ݁ݓ  ≤ ݓ ≤ 1,∀݅. 
The weights are calculated using 

ݓ =
ݎ)߰ ⁄(ොߪ
ݎ ⁄ොߪ

                                                                                                                                     (8) 

The weight function ߰  determine the level of robustness of the estimator. Two common 
߰ functions in use are the Huber and bisquare ߰ functions. The Huber ߰ function is given as 

(ݎ)߰ = ቐ
ுܥ− ݎ ݂݅   , < ுܥ−

,ݎ    |ݎ| ݂݅ < ுܥ
,ுܥ ݎ ݂݅     > ுܥ

                                                                                                       (9) 

The parameter ܥு is the tuning constant and ܥு = 1.345 is proposed to achieve 95% efficiency 
under normal errors. The Huber weight function is given as 

(ݎ)ݓ = ቐ
ுܥ− ⁄ݎ ݎ ݂݅   , < ுܥ−
   1, |ݎ| ݂݅ < ுܥ
ுܥ ⁄,ݎ ݎ ݂݅  > ுܥ

                                                                                                       (10) 

Another ߰ function that is frequently in used is the bisquare ߰ function. This is given by 
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(ݎ)߰

= ቐ
ݎ ݂݅                                    ,0    < ܥ−
1)ݎ    − ݎ) ⁄ܥ )ଶ)ଶ, |ݎ| ݂݅ < ܥ

ݎ ݂݅                                    ,0 > ܥ
                                                                                   (11) 

If the parameter ܥ is the taking to be equal to 4.685 the estimator attain 95% efficiency under 
normal errors. The bisquare weight function is given as 
(ݎ)ݓ

= ቐ
ݎ ݂݅                                    ,0    < ܥ−
   (1 − ݎ) ⁄ܥ )ଶ)ଶ, |ݎ| ݂݅ < ܥ

ݎ ݂݅                                    ,0 > ܥ
                                                                                   (12) 

The M-estimator is robust to outliers in y direction, but has no resistance against leverage 
points. Only one leverage point is enough to cause the M-estimator to breakdown and hence 
the breakdown of M-estimator is only 1 ݊⁄  (Rousseeuw & Leroy, 1987).  

Least Trimmed Squares (LTS) estimator is based on the value of ߚመ  which minimises 
∑ ()ݎ

ଶ
ୀଵ , where ݎ(ଵ)

ଶ ≤ ⋯ ≤ ()ݎ
ଶ are the squared residuals arranged in ascending order. The 

default value of h given by ℎ = [݊ 2⁄ ] + 1, yields a breakdown point of approximately 0.5 
(Rousseeuw & Leroy, 1987).  

Least Trimmed sum of absolute deviations (LTA) estimator is based on the value of ߚመ  
which minimises ∑ หݎ()ห

ୀଵ , where ݎ(ଵ) ≤ ⋯ ≤  are the absolute residuals written in ()ݎ
ascending order. The default value of h given by ℎ = [(݊ +  + 1) 2⁄ ], maximizes the 
breakdown of the resulting estimator (Hawkins and Olive, 1999).  

MM-estimator derived by Yohai (1987), is a modified form of the Maximum 
Likelihood Type Estimator, M-Estimator, (Huber and Ronchetti, 2009), which estimates the 
regression parameters by determining the solution to the ( + 1) equations 

߰ቀ
ݎ
ොߪ
ቁݔ = 0



ୀଵ

                                                                                                                                 (13) 

      ݆ = 0,⋯ ,   .ො is a robust measure of variation based on the residuals using MADNߪ where ,
  and 

,ݎ)߰ ܿ) =
ݎ
ොߪ ቀ

ݎ
ොቁߪܿ

ଶ
− 1൨

ଶ

, ݂݅ ቚݎ ොൗߪ ቚ ≤ ܿ;                                                                               (14) 

otherwise, ߰(ݎ, ܿ) = 0. The choice ܿ = 4.685 leads to an MM-estimator with 95% efficiency 
compared to the least square estimator (Maronna et al., 2006). 
2.3 Double weighted M-estimator (DWM) 

In the criterion for M-estimator, the sum of the weighted vertical deviations is minimized 
and it is assumed that the sum of the horizontal deviations will not be significant enough to affect 
the estimation procedure. However, when there is a leverage point, the sum of the horizontal 
deviations is significant and could render the estimated parameter unacceptable as it is often biased 
and inefficient. We argue in favour of M-estimation procedure that weight down supposed outliers 
in both vertical and horizontal directions.  
  For simplicity, consider the simple linear regression model given by: 
ݕ = ߚ + ݔଵߚ +  (15)                                                                                                                        ݎ
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where ݕ is the response or dependent variable, ݔ is the independent variable or the predictor 
while ݎ is the error term associated with the model. The purpose of regression analysis is to fit 
a model by finding the estimate ߚመ and ߚመଵ of the regression parameters ߚ and ߚଵ using sample 
data with minimum possible error.  
The fitted model from the sample is given by: 
ොݕ = መߚ +                                                                                                                             (16)ݔመଵߚ

Equation (9) can then be used to determine the fitted value (ݕො) of y corresponding to ݔ. The 
estimated error term ̂ݎ associated with the observation (ݔ,ݕ) is the difference between the 
observed response ݕ and fitted response ݕො given by: 
ݎ̂ = ݕ − ොݕ                                                                                                                                      (17) 

The cut-off point (C) used to identify outlying observation is define as 
ܥ = ොߪ݇ ,                                                                                                                                       (18) 

where ݇ is the turning parameter and ߪො is the robust estimate of the residual scale. The robust 
estimate commonly in use is the Median Absolute Deviation about the median (MAD) given by: 
MAD = |)݀݁ܯ ܺ −݉݁݀(ܺ)|), ݅ = 1, 2,⋯ , ݊                                                                          (19)  
To get a robust estimate that is consistent when the residuals follows the Gaussian distribution, 
the normalised median absolute deviation about the median (MADN) given by: 
MADN = |)݀݁ܯ 1.4826 ܺ −݉݁݀(ܺ)|), ݅ = 1, 2,⋯ ,݊,                                                        (20)  
is used. 
If the residual is positive and greater than ܥ for a particular outlying observation, the observation 
is adjusted to improve the fitness of the model as follows: 
ݕ ∗ = ොݕ +  (21)                                                                                                                               .ܥ

Observation with negative residual less than −ܥ are considered outlying and the fitness of the 
model is adjusted for improvement as follows: 
∗ݕ = ොݕ −  (22)                                                                                                                                    ܥ

The iterative procedure are continued until the difference between successive estimates of the 
parameters is less than the tolerance value. 
The procedure is repeated for ݔ as the dependent variable and ݕ as the independent variable 
using the model 
ݔ = ߚ + ݕଵߚ +  (23)                                                                                                                         ݎ

This double weighing will reduce the impact of supposed outliers and leverage points and the 
adjusted data are then used to build a model of y on x. 

In multiple regression, after weighing of residuals using y as a function of all 
independent variables, multiple weighing is carried out by modelling each independent variable 
as a function of y and other independent variables. For model with two independent variables, 
say ݔଵ ܽ݊݀ ݔଶ,  we perform three weighing procedures using three different models: 

ݕ = ߚ + ଵݔଵߚ + ଶݔଶߚ +  (24)                                                                                                   ݎ
ଵݔ = ߚ + ݕଵߚ + ଶݔଶߚ +  (25)                                                                                                   ݎ
ଶݔ = ߚ + ݕଵߚ + ଵݔଵߚ +  (26)                                                                                                   ݎ

The adjusted data is then used to build the model of y on the other independent.  

2.4 Breakdown point of regression estimator 
Donohor and Huber (1983) introduced a finite sample breakdown point (FSBP) defined 

as follows: 
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Let Ω = ܴ߳ݓ} ݅ ݎ݂  = 1,⋯ ,݊} be a sample of size n. The breakdown point of an estimator 
T at Ω is given by 

(ܶ)∗ߝ = ଵ

ݔܽ݉ ቄ݉: ௦௨ஐ෩

ฮܶ൫Ω෩൯ฮ < ∞ቅ,                                                                              (27)  

where Ω෩ is any sample obtained from Ω by replacing any m of the points in Ω by arbitrary 
values. The largest m/n for which the property in (27) holds is the breakdown point of estimator 
T. The lowest breakdown point is 0 while the highest is 0.5 because at that point it is impossible 
to distinguish between contaminated and uncontaminated data. 
 
2.5 Computational experiment  

Monte Carlo Simulation is used to examine the robustness and efficiency of the 
proposed estimator. We performed experiment involving simple and multiple linear regression 
models. In the experiment, four levels of data contaminations (10%, 20%, 30% and 40%) were 
crossed with three sample sizes (20, 100 and 500) and this is repeated for both y and x variates. 
The assumed model for the simple regression is ݕ = 1 + ݔ2 +  while for the multiple ݎ
regression, the model is ݕ = 1 + ଵݔ2 + ଶݔ5 +  Hence the true parameters are 1, 2, and 5 for .ݎ
ߚ , ,ଶ respectively. Residuals for y outliers were generated using  ܰ(10ߚ ݀݊ܽ,ଵߚ  9) instead of 
the usual  ܰ(0, 1) for non-outlying y variates. The x variates are generated as follows: 
,1−)ݑ~ݔ 1) for simple regression, ݔଵ~1−)ݑ, ,2−)ݑ~ଶݔ,(1 2) for multiple regression. 
Outlying x variates were generated by using the uncontaminated x values to generate y and 
thereafter ݔ and ݔଵ values are replaced by contaminated values generated from 10)ݑ~ݔ, 50) 
and ݔଵ~10)ݑ, 50) for simple and multiple regressions, respectively, using the idea of 
Rousseeuw & Leroy (1987).  

All simulation programs were developed using R Statistical programming language (R 
Core Team, 2015). The function lm in the base package is used to obtain the estimate of 
regression parameters for the OLS estimator. The function rq in the package quantreg is used 
to obtain the estimate of LAD regression parameters using Portnoy and Koenker (1997) 
quantile regression algorithm. The function rlm in the package MASS is used to obtain the M 
estimate of regression parameters using Huber and Bisquare weighting functions. To obtain 
the estimate of regression parameters using MME algorithm (Yohai, 1987), we used the 
function lmrob in the package robust-base. The default value of the tuning parameter was used 
for all estimators.        

Each simulation case was replicated ܯ = 1000 times. The estimates of each estimator are 
calculated in each iteration and the mean of the M replicated estimates is given by 

መߚ =
∑ መெߚ
ୀଵ

ܯ ݆ ݎ݂                = 0, 1, 2,⋯  (28)                                                              ,

is recorded for each estimator. Robustness of estimators is measured using absolute bias given as 
መ൯ߚ൫ݏܽ݅ܤݏܾܣ = หߚ − ݆ ݎ݂                  መหߚ = 0, 1, 2,⋯  (29)                                        ,

A robust estimator has an estimate that is close to the actual parameter irrespective of the distortion 
in the distribution of the error terms. The lower the bias the more robust is the estimator. Efficiency 
of the estimators is measured using the MSE defined as 

መ൯ߚ൫ܧܵܯ =
∑ ߚ) − መ)ଶெߚ
ୀଵ

ܯ ݆ ݎ݂           = 0, 1, 2,⋯ ,  (30)                                              

 and the variance of the estimator is defined as 
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መ൯ߚ൫ݎܸܽ = መ൯ߚ൫ܧܵܯ − ቀݏܽ݅ܤ൫ߚመ൯ቁ
ଶ

݆ ݎ݂         = 0, 1, 2,⋯  (31)                                 ,

The estimator with lowest MSE is the most efficient, the smaller the MSE the more efficient is 
the estimator. 

3. Results 

Due to limited space, the results presented represent the estimates of the estimators at 
the breakdown point. The summary of simulation results are presented in the Tables below.  

Table 1: Bias for Simple and Multiple linear regression Estimates with no Outliers 
Simple Regression, No Outlier 

     

Sample Size Beta OLS LAD Huber Bisquare DWM MME 

20 Beta0 0.00317 0.00516 0.00367 0.00442 0.01608 0.00459 

20 Beta1 0.00360 0.01166 0.00061 0.00238 0.15636 0.00229 

100 Beta0 0.00271 0.00225 0.00233 0.00204 0.00166 0.00224 

100 Beta1 0.00361 0.00648 0.00371 0.00396 0.11767 0.00372 

500 Beta0 0.00047 0.00107 0.00024 0.00023 0.00159 0.00023 

500 Beta1 0.00350 0.00337 0.00217 0.00239 0.18283 0.00243 

Multiple Regression, No Outlier           

Sample Size Beta OLS LAD Huber Bisquare DWM MME 

20 Beta0 0.00950 0.00243 0.01055 0.01205 0.03132 0.01005 

20 Beta1 0.01506 0.02547 0.01571 0.01560 0.14069 0.01602 

20 Beta2 0.00948 0.00432 0.01209 0.01269 0.05170 0.01213 

100 Beta0 0.00168 0.00049 0.00124 0.00122 0.00566 0.00081 

100 Beta1 0.00955 0.01052 0.00934 0.00904 0.11053 0.00764 

100 Beta2 0.00061 0.00379 0.00153 0.00161 0.02774 0.00159 

500 Beta0 0.00019 0.00141 0.00035 0.00038 0.00052 0.00038 

500 Beta1 0.00015 0.00169 0.00070 0.00095 0.14026 0.00096 

500 Beta2 0.00209 0.00163 0.00255 0.00255 0.03673 0.00256 

 

We observed that when there are no outliers, all estimators are unbiased.  

Table 2: Efficiency for Simple and Multiple linear regression Estimates with no Outliers 
Simple Regression, No Outlier      
Sample Size Beta OLS LAD Huber Bisquare DWM MME 

20 Beta0 0.05170 0.07437 0.05443 0.05614 0.05757 0.05553 
20 Beta1 0.14687 0.22798 0.15625 0.16525 0.20383 0.16189 

100 Beta0 0.00927 0.01421 0.00992 0.00994 0.01013 0.00993 
100 Beta1 0.02476 0.03995 0.02656 0.02692 0.04633 0.02695 
500 Beta0 0.00208 0.00345 0.00222 0.00223 0.00235 0.00223 
500 Beta1 0.00602 0.00943 0.00627 0.00626 0.04134 0.00626 

Multiple Regression, No Outlier           
Sample Size Beta OLS LAD Huber Bisquare DWM MME 

20 Beta0 0.05860 0.08756 0.06052 0.06275 0.07719 0.06214 
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Table 2 Cont’d 
20 Beta1 0.14930 0.23244 0.15352 0.16139 0.23033 0.15812 
20 Beta2 0.03668 0.06159 0.03906 0.04145 0.05251 0.04036 

100 Beta0 0.00924 0.01465 0.00965 0.00968 0.01255 0.00979 
100 Beta1 0.02628 0.03903 0.02799 0.02813 0.05068 0.02863 
100 Beta2 0.00838 0.01248 0.00879 0.00886 0.01167 0.00890 
500 Beta0 0.00180 0.00305 0.00194 0.00196 0.00249 0.00196 
500 Beta1 0.00554 0.00904 0.00593 0.00591 0.02774 0.00591 
500 Beta2 0.00149 0.00228 0.00157 0.00158 0.00329 0.00158 

 

OLS estimator is the most efficient and efficiency of all estimators increases with 
increase in sample size.  
Table 3: Bias for Simple and Multiple linear regression Estimates with 30% Y-Outliers 

Simple Regression, 30% Y-Outlier      
Sample Size Beta OLS LAD Huber Bisquare DWM MME 

20 Beta0 3.06678 0.40930 1.10097 0.14187 0.71431 0.13734 
20 Beta1 0.43599 0.13121 0.27142 0.07431 0.16057 0.06321 

100 Beta0 2.98413 0.39388 0.83380 0.07845 0.67795 0.09611 
100 Beta1 0.36331 0.07543 0.14759 0.01271 0.18781 0.01633 
500 Beta0 3.00362 0.39512 0.80030 0.07636 0.68272 0.09048 
500 Beta1 0.03749 0.01305 0.02107 0.00158 0.05788 0.00199 

Multiple Regression, 30% Y-Outlier        
Sample Size Beta OLS LAD Huber Bisquare DWM MME 

20 Beta0 2.72429 0.46143 1.21826 0.34948 0.60373 0.16153 
20 Beta1 2.67519 0.73357 1.66849 0.55068 0.81808 0.22088 
20 Beta2 0.14188 0.03680 0.03580 0.00345 0.25831 0.00325 

100 Beta0 2.98557 0.39512 0.82745 0.07314 0.30508 0.09356 
100 Beta1 0.11290 0.03556 0.05614 0.01425 0.14891 0.01546 
100 Beta2 0.16071 0.03945 0.07191 0.01167 0.20081 0.01323 
500 Beta0 2.98890 0.39664 0.79637 0.07704 0.33840 0.09146 
500 Beta1 0.40418 0.07675 0.14312 0.01187 0.10745 0.01471 
500 Beta2 0.05508 0.01189 0.02061 0.00393 0.14436 0.00405 

 

Table 4: Efficiency for Simple and Multiple linear regression Estimates with 30% Y-Outliers 
Simple Regression, 30% Y-Outlier      

Sample Size Beta OLS LAD Huber Bisquare DWM MME 
20 Beta0 10.71917 0.30926 1.86749 0.24872 0.70242 0.15918 
20 Beta1 4.91288 0.52439 0.80624 0.48640 0.67968 0.49094 

100 Beta0 9.18507 0.18180 0.77490 0.02551 0.49505 0.02913 
100 Beta1 1.04221 0.10725 0.14493 0.07318 0.16122 0.07784 
500 Beta0 9.06949 0.16121 0.65376 0.00978 0.47254 0.01227 
500 Beta1 0.15061 0.01704 0.01904 0.01196 0.02205 0.01246 

Multiple Regression, 30% Y-Outlier           
Sample Size Beta OLS LAD Huber Bisquare DWM MME 

20 Beta0 8.61498 0.41840 2.24990 0.80129 0.96599 0.18487 
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Table 4 Cont’d 
20 Beta1 11.40943 1.42360 4.70397 2.04255 0.75716 0.58403 
20 Beta2 1.18203 0.14450 0.29497 0.16311 0.40460 0.12547 

100 Beta0 9.16629 0.18196 0.76732 0.02513 0.14590 0.02975 
100 Beta1 0.72481 0.07770 0.10007 0.05293 0.13540 0.05681 
100 Beta2 0.26087 0.02642 0.03686 0.01720 0.08384 0.01842 
500 Beta0 8.98327 0.16281 0.64803 0.00987 0.12660 0.01247 
500 Beta1 0.30838 0.02222 0.03785 0.01166 0.03242 0.01227 
500 Beta2 0.04182 0.00452 0.00522 0.00300 0.02702 0.00312 

 

The OLS estimator becomes biased and inefficient when the data contains 30% Y-outliers. 
Other estimators remain unbiased. 

Table 5: Bias for Simple and Multiple linear regression Estimates with 20% X-Outliers  
Simple Regression, 20% X-Outlier      

Sample Size Beta OLS LAD Huber Bisquare DWM MME 
20 Beta0 0.05903 0.09191 0.05855 0.05833 0.25660 0.04733 
20 Beta1 1.98274 1.97063 1.98260 1.98229 0.73554 0.77247 

100 Beta0 0.04439 0.04779 0.04686 0.04660 0.27669 0.01310 
100 Beta1 1.98650 1.98514 1.98595 1.98595 0.60007 0.22593 
500 Beta0 0.04296 0.05020 0.04528 0.04523 0.27541 0.00045 
500 Beta1 1.98623 1.98376 1.98543 1.98546 0.57465 0.00095 

Multiple Regression, 20% X-Outlier       
Sample Size Beta OLS LAD Huber Bisquare DWM MME 

20 Beta0 0.01846 0.04140 0.02341 0.02597 0.18724 0.00655 
20 Beta1 1.98643 1.97920 1.98635 1.98625 0.05853 0.85997 
20 Beta2 0.00068 0.00094 0.00006 0.00102 0.07465 0.01195 

100 Beta0 0.05404 0.05410 0.05561 0.05558 0.24219 0.01372 
100 Beta1 1.98608 1.98380 1.98529 1.98526 0.80357 0.28530 
100 Beta2 0.00130 0.00056 0.00144 0.00145 0.05755 0.00032 
500 Beta0 0.04199 0.04882 0.04454 0.04449 0.24084 0.00049 
500 Beta1 1.98568 1.98270 1.98472 1.98475 0.74336 0.01225 
500 Beta2 0.00155 0.00163 0.00107 0.00127 0.05617 0.00086 

 

Table 6: Efficiency for Simple and Multiple linear regression Estimates with 20% X-Outliers.  
Simple Regression, 20% X-Outlier       

Sample Size Beta OLS LAD Huber Bisquare  DWM MME 
20 Beta0 0.14115 0.24972 0.16120 0.16878  0.16035 0.12117 
20 Beta1 3.93454 3.88884 3.93433 3.93329  0.91534 1.83499 

100 Beta0 0.03139 0.05910 0.03466 0.03457  0.09042 0.01497 
100 Beta1 3.94678 3.94189 3.94464 3.94466  0.41181 0.49897 
500 Beta0 0.00732 0.01293 0.00814 0.00807  0.07844 0.00238 
500 Beta1 3.94525 3.93554 3.94210 3.94219  0.34146 0.01215 

Multiple Regression, 20% X-Outlier            
Sample Size Beta OLS LAD Huber Bisquare  DWM MME 

20 Beta0 0.15759 0.27431 0.18048 0.19136  0.20421 0.13292 
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Table 5 Cont’d 

 

   
Figure 1: Scatter Plot and Fitted Line for Simple and Multiple linear regression Estimates with 
20% X-Outliers 

DWM and MME remain unbiased when the data contain 20% X-outlier other 
estimators are bias and inefficient. However, DWM is the only efficient estimator when the 
sample size is 20 (small sample) for both simple and multiple regressions. 

Table 7: Bias for Simple and Multiple linear regression Estimates with 10% Y-Outlier and 10% 
X-Outlier 

Simple Regression, 10% Each XY-Outliers     
Sample Size Beta OLS LAD Huber Bisquare DWM MME 

20 Beta0 1.02787 0.08499 0.18938 0.00488 0.08193 0.01773 
20 Beta1 2.04590 1.95960 1.99163 1.97848 0.74978 0.26895 

100 Beta0 1.04492 0.11777 0.18477 0.02100 0.06552 0.01131 
100 Beta1 2.04495 1.98163 1.98923 1.97585 0.80765 0.00691 
500 Beta0 1.06856 0.14194 0.20181 0.00323 0.07682 0.01737 
500 Beta1 2.04436 1.98146 1.98852 1.97537 0.81276 0.00134 

Multiple Regression, 10% Each XY-Outliers      
Sample Size Beta OLS LAD Huber Bisquare DWM MME 

20 Beta0 1.10292 0.14618 0.21761 0.01214 0.13584 0.01064 

20 Beta1 3.94937 3.92281 3.94931 3.94915  0.54368 2.00664 
20 Beta2 0.09826 0.16266 0.10917 0.11579  0.12147 0.08776 

100 Beta0 0.03102 0.05637 0.03471 0.03458  0.07761 0.01733 
100 Beta1 3.94515 3.93664 3.94207 3.94196  0.71207 0.60698 
100 Beta2 0.01696 0.03146 0.01886 0.01877  0.01971 0.01127 
500 Beta0 0.00715 0.01356 0.00806 0.00800  0.06158 0.00255 
500 Beta1 3.94305 3.93135 3.93924 3.93936  0.56434 0.01564 
500 Beta2 0.00359 0.00657 0.00395 0.00392  0.00630 0.00191 
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Table 7 Cont’d 
20 Beta1 2.06237 1.80525 1.92535 1.82684 0.91541 0.26519 
20 Beta2 0.76651 0.14568 0.21926 0.03888 0.74935 0.00098 

100 Beta0 1.04873 0.09555 0.16547 0.02074 0.28864 0.00517 
100 Beta1 2.03793 1.86664 1.91641 1.79470 0.68196 0.03813 
100 Beta2 0.95796 0.16635 0.23889 0.02995 0.89775 0.00022 
500 Beta0 1.05692 0.09699 0.16619 0.01679 0.33414 0.00827 
500 Beta1 2.04747 1.87476 1.93114 1.70920 0.57859 0.04547 
500 Beta2 0.98999 0.17778 0.25051 0.03036 0.91178 0.00058 

 

Table 8: Efficiency for Simple and Multiple linear regression Estimates with 10% Y-Outlier  
and 10% X-Outlier 

Simple Regression, 10% Each XY-Outliers     
Sample Size Beta OLS LAD Huber Bisquare DWM MME 

20 Beta0 1.67879 0.28766 0.20959 0.16583 0.12154 0.09361 
20 Beta1 4.19404 3.84915 3.97240 3.92036 0.01520 0.85410 

100 Beta0 1.21631 0.06923 0.06908 0.03215 0.02538 0.01470 
100 Beta1 4.18353 3.92892 3.95822 3.90514 0.72689 0.06306 
500 Beta0 1.16591 0.03099 0.04775 0.00667 0.01011 0.00310 
500 Beta1 4.17972 3.92660 3.95447 3.90234 0.67541 0.00796 

Multiple Regression, 10% Each XY-Outliers     
Sample Size Beta OLS LAD Huber Bisquare DWM MME 

20 Beta0 2.34868 0.31183 0.29099 0.18614 0.63277 0.09680 
20 Beta1 4.41254 3.47838 3.89309 3.69184 0.68659 0.79067 
20 Beta2 1.88901 0.27888 0.29146 0.15608 0.28216 0.07860 

100 Beta0 1.30931 0.06620 0.06626 0.03158 0.21356 0.01402 
100 Beta1 4.18336 3.53647 3.71726 3.33020 0.29309 0.07904 
100 Beta2 1.16530 0.07129 0.09537 0.02793 0.95906 0.01114 
500 Beta0 1.15857 0.02004 0.03586 0.00635 0.13506 0.00309 
500 Beta1 4.19727 3.52358 3.73722 2.97265 0.49465 0.02459 
500 Beta2 1.02439 0.04017 0.06993 0.00596 0.85988 0.00213 

 

DWM and MME remain unbiased and efficient when the data contain 10% Y-outlier and 10% 
X-outlier other estimators are bias and inefficient.  
 

4. CONCLUSION 

Generally, when there are no outliers in the data, all estimators are unbiased and OLS 
is the most efficient estimator. The Monte Carlo simulation results agree with the classical 
results that OLS estimator is the Best Linear Unbiased Estimator (BLUE) under this condition. 
DWM and MME are unbiased and efficient while OLS, LAD, Huber and Bisquare estimators 
are bias and inefficient when there are leverage points and when contamination exist in both X 
and Y directions for large samples. However, DWM is the only efficient estimator for small 
sample when the data contains 20% X-outliers.    
 

 



Journal of the Nigerian Statistical Association, Vol. 34, 2022                                                       Ogundele & Ajibade 

98 
 

References 

Afrah, Y. and Rezami, A.L. (2020). Effect of outliers on the coefficient of determination in multiple 
regression analysis with the application on the GPA for student, International Journal of Advanced 
and Applied Sciences, l 7(10), 30 – 37. 

Donoho, D.L. and Huber, P.J. (1983). The notion of breakdown point, In: A Festschrift for Eric 
Lehmann, Bickel P. J., Doksum K. A. and Hodges J. L. (Eds.), 157 – 184, Wadsworth, Belmont. 
CA. 

Hawkins, D.M. and Olive, D. (1999). Applications and algorithms for least trimmed sum of absolute 
deviations regression, Computation Statistics & Data Analysis, 32, 119 – 134. 

Huber, P.J. and Ronchetti, E.M. (2009). Robust Statistics, Second Edition, John Wiley & Sons Inc., 
New York. 

 Manimannan, G.M., Salomi, Priya R.L. and Saranraj, R (2020). Detecting outliers using R Package in 
fitting data with linear and nonlinear regression models, International Journal of Scientific and 
Innovative Mathematical Research, 8(4), 1 – 13.  

Maronna, R.A., Martins, R.D. and Yohai, V.J. (2006). Robust Statistics: Theory and Methods, John 
Wiley & Sons Ltd, West Sussex. 

Nevitt, J. and Tam, H.P. (1998). A comparison of robust and nonparametric estimators under the simple 
linear regression model, Multiple Linear Regression Viewpoints, 25, 54 – 69. 

Portnoy, S. and Koenker, R. (1997). The Gaussian Hare and the Laplacian Tortoise: compatibility of 
squared-error versus absolute-error estimators, Statistical Science, 12(4), 279 – 300. 

Rousseeuw, P.J. and Leroy, A.M. (1987). Robust regression and outlier detection, John Wiley & Sons 
Inc., New York. 

Stephen, R.S. and Senthamarai, K.K. (2017). Detection of outliers in regression model for medical data, 
International Journal of Medical Research & Health Sciences, 6(7), 50 – 56. 

Wolberg J. (2006). Data analysis using the method of least squares, Springer-Verlag, Berlin 
Heidelberg. 

Yohai, V.J. (1987). High breakdown-point and high efficiency estimates for regression, Annals of 
Statistics, 15(2), 642-656. 


