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In time series literature, exogenous variables tend to improve the forecast of the endogenous 

variables. This paper examined the forecast performance of six (6) versions of Bayesian 

Vector Autoregressive models with exogenous variables (BVARX) using normal-inverse 

Wishart Prior when collinearity exist between the exogenous variables for small sample 

situations. To achieve this, VAR(2) model was used to simulate bivariate time series from a 

stable process while bivariate exogenous variables were simulated from a standard normal 

distribution to possess the following collinearity levels: -0.99, -0.95, -0.9, -0.85, -0.8, 0.8, 

0.85, 0.9, 0.95, 0.99. The experiment was carried out in R environment and repeated 10,000 

times for the following time series lengths: 8, 16, 32 and 50. The Root Mean Square Error 

(RMSE) and the Mean Absolute Error (MAE) were used to adjudge the models. In all the 

scenarios considered, BVARX4 performed best while BVARX1 performed worst in all the 

collinearity levels and time series lengths. Lastly, RMSE and MAE values of the BVARX 

models are higher with negative collinearity compared to positive collinearity while the 

values of RMSE and MAE for the BVARX model decreased as the time series length 

increased.  
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1. Introduction 

In the field of statistics, researchers are developing methods ranging from Classical to 

Bayesian methods in order to gain useful inference from small samples situation so as to 

avoid biased and incorrect inference. In the past, some statisticians recommend non-

parametric statistical methods but it has also been found that Bayesian statistics and 

estimation can be used to overcome the limitations peculiar to small sample sizes (van de 

Schoot, 2018). For example, Yahya and Olaniran (2013) compared Bayesian Linear 

regression against two classical regression methods (the ridge regression and ordinary least 

squares) on data inherent with collinearity. Their simulation study revealed the efficiency 

and superiority of Bayesian statistical model over the classical regression model. 

 

In the field of econometrics, Bayesian Vector Autoregression (VAR) has shown some level 

of superiority over Classical VAR in terms of estimation and forecasting in small sample 

situation (Canova, 2007; Adenomon, 2015; Adenomon, et al. 2016 and Adenomon et al. 
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2015). VAR methodology superficially resembles simultaneous equation modelling in that 

we consider several endogenous variables together in which each endogenous variable is 

explained by its lagged values and the lagged values of all the other endogenous variables in 

the model (Adenomon, 2017 and Gujarati, 2003). Adenomon and Oyejola (2019) examined 

the performance of Vector Autoregressive (VAR) and Bayesian VAR models in the presence 

of collinearity and autocorrelated error terms. Also, Adenomon and Oyejola (2014) studied 

the forecasting performances of the unrestricted VAR and Bayesian VAR in the presence of 

collinearity levels: 0.8, -0.8, 0.85, -0.85, 0.9, -0.9, 0.95, -0.95, 0.99 and -0.99. Similar studies 

are found in Adenomon et al. (2016, 2015). Djurovic et al. (2020) investigated the 

macroeconomic effects of COVID-19 in Montenegro using BVAR approach with 

Litterman/Minessota Prior on demand and supply losses due to illness and closed activities 

and their effects on GDP growth. All these previous studies did not consider the role of 

exogenous variables in VAR and BVAR models. 

 

But some time series modelers believe that including exogenous variables to VAR (VARX) 

model improves the forecasts. It is on this background that this study implemented the 

Bayesian VAR with exogenous variables (BVARX) model. Recent studies in econometrics 

have identified the superiority of Bayesian VAR with exogenous variables (BVARX) over 

Bayesian VAR and standard VAR models in terms of in-sample and out-sample forecasts 

(Djurovic et al., 2020). The reason is because potential exogenous variables could improve 

the performance of BVAR models (Cuaresma et al. 2014).  Application of BVARX in 

forecasting cryptocurrencies can be seen in Bohte and Rossini (2019) while BVARX 

application on the dynamic interrelationships among inflation while interest and exchange 

rates with the effects of money supply and GDP in Nigeria can be seen in Adenomon and 

Oduwole (2022).  

 

Anttonen (2019) examined conditional BVARX forecasting model for small open economies 

such as Finland. In considering short term forecasting using BVARX, the study reported that 

BVARX model outperformed the univariate benchmark models. Burlon et al. (2015) 

considered medium-term forecasting of euro-area macroeconomic variables using DSGE, 

BVARX and univariate model to compare their forecasting performances. The study 

revealed similar performances by DSGE and BVARX models, and, DSGE and BVARX 

models performed more accurately than simple regression models. Ahmad and Haider (2019) 

compared the forecast performance of DSGE, VARX, BVARX and BVAR models on out-

of-sample forecasts for GDP growth, Call money rate, CPI inflation and percent change in 

exchange rate in Pakistan. The models performed with respect to each endogenous variable 

equation (GDP growth, Call money rate, CPI inflation and exchange rate) but BVARX model 

provides more accurate forecast for exchange rate. Romero and Sal (2022) used BVARX 

model to provide evidence that inflation expectations obtained from surveys and break-even 

inflation measures are affected by weather supply shocks. But none of these studies 

investigated the effect of collinearity between the exogenous variables in BVARX model. 

 

This study focuses on a simulation study on the in-sample forecasting performances of Sims-

Zha Bayesian VARX in the presence of high collinearity between the exogenous variables 

for small sample situations. 
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2. Methodology 

This study employed simulation study. 

2.1  Simulation Procedure 

The simulation procedure is as follows: 

Step 1: Generation of an artificial two-dimensional (Bivariate data) VAR (2) process that 

obeys the following form: 

[
𝑦1

𝑦2
]
𝑡
= [

5.0
7.0

] + [
0.50.2
−0.2 − 0.5

] [
𝑦1

𝑦2
]
𝑡−1

+ [
−0.3 − 0.7
−0.10.3

] [
𝑦1

𝑦2
]
𝑡−2

+ [
𝑢1

𝑢2
]
𝑡
, 

where 𝑢𝑖𝑡~𝑁(0,1) for i = 1, 2. The choice here is similar to the work and illustration of 

Cowpertwait (2006).  

Step 2: Ten (10) collinearity levels were considered as 𝜌 = -0.99, -0.95, -0.9, -0.85, -0.8, 0.8, 

0.85, 0.9, 0.95 and 0.99 for the exogenous variables, 𝑋𝑖𝑡~𝑁(0, 1) for i = 1, 2. 

Step 3: Then apply the Cholesky Decomposition to the data generated in step 2 in order to 

create a bivariate time series data so that X1 and X2 have the desired correlation level. 

 

In this present study, let the desired correlation matrix be 𝑅 = [
1    𝜌
𝜌   1

]; then the Choleski 

factor, P, is 𝑃 = [
1        0

𝜌√1-𝜌2] and the simulated data is pre-multiplied by the Choleski factor so 

that the simulated data is scaled to have the desired correlation level (Diebold & Mariano, 

2002). The combination of steps 1 and 3 produces a bivariate time series (y1 and y2) and the 

exogenous variables (X1 and X2) are collinear. The simulated data assumed time series 

lengths (T) of 8, 16, 32 and 50. 

2.2 Model Evaluation Procedure 

The following procedures were used: 

1. Mean Absolute Error (MAE) is given as 𝑀𝐴𝐸𝑗 =
∑ |𝑒𝑖|

𝑛
𝑖=1

𝑛
. This criterion measures 

deviation from the series in absolute terms and measures how much the forecast is 

biased.  

2. The Root Mean Square Error (RMSE) is given as 𝑅𝑀𝑆𝐸𝑗 = √
∑ (𝑦𝑖 −𝑦𝑓)2𝑛

𝑖

𝑛
, where yi is 

the time series data and yf is the forecast value of y (Caraiani, 2010). 

The smaller the values of MAE and RMSE, the better the fits of the model become (Cooray, 

2008). In this simulation study, 𝑅𝑀𝑆𝐸 =
∑ 𝑅𝑀𝑆𝐸𝑗

𝑁
𝑗

𝑁
 and 𝑀𝐴𝐸 =

∑ 𝑀𝐴𝐸𝑗
𝑁
𝑗

𝑁
, where N=10000. 

The model with the minimum RMSE and MAE results is the preferred model. 

Table 1: Sample of simulated data for t = 8 and 𝝆 = -0.99 

y1        y2          x1          x2 

[1,]    6.3737909   11.373791     1.21269855     -0.99356972 

[2,]   11.3237605    3.900453     0.35508066     -0.53343911 

[3,]    2.0416691    9.033269     2.21627421     -2.23046333 

[4,]    2.4013057    5.814055    -0.09054039      0.13097496 

[5,]    0.3426198    9.033470    -1.31652811      1.25576384 

[6,]    3.7564760    8.487529     0.06653479      0.02346259 

[7,]    2.9669209    8.498111     0.51217262     -0.55123017 
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[8,]    1.5096382    7.722940     0.05002974     -0.03050043 

 

Correlation matrix from simulated data              

           x1         x2 

x1  1.0000000 -0.9936951 

x2 -0.9936951  1.0000000 

 

 

Table 1 presents a sample of generated data for T = 8 and 𝜌 = -0.99. The correlation from 

the simulated data is similar to the actual correlation coefficient. 

2.3 Model Description and Specifications 

2.3.1 Bayesian vector autoregression with Sims-Zha Prior and BVARX model 

The BVAR model of Sims and Zha (1998) has gained popularity both in economic time 

series and political analysis, because the Sims-Zha BVAR allows for a more general 

specification and can produce a tractable multivariate normal posterior distribution, which 

leads to robust estimation and estimates. To construct a reduced form Bayesian SUR with 

the Sims-Zha prior is as follows. The prior means for the reduced form coefficients are that 

B1 = I and B2, . . ., Bp = 0. This means that B1 = I; that is, B1 is an identity matrix while B2, . 

. ., Bp = 0; that is, B2, . . . Bp are equal to null matrices. It is assumed that the prior has a 

conditional structure that is multivariate Normal-inverse Wishart distribution for the 

parameters in the model. Again, the Sims-Zha BVAR estimates the parameters for the full 

system in a multivariate regression (Brandt and Freeman, 2006). 

 

In the reduced form model,   

𝑦𝑡 = 𝑐 + 𝑦𝑡−1𝐵1 +  .  .  . + 𝑦𝑡−𝑝𝐵𝑝 + 𝑢𝑡,      (1) 

where 𝑐 = 𝑑𝐴0
−1 , 𝐵𝑙 = −𝐴𝑙𝐴0

−1 , 𝑙 = 1,2, . . . 𝑝 , 𝑢𝑡 = 휀𝑡𝐴0
−1  and Σ = 𝐴0

−1′𝐴0
−1. The matrix 

representation of the reduced form is given as 

𝑌
𝑇×𝑚

= 𝑋
𝑇×(𝑚𝑝+1)

𝛽
(𝑚𝑝+1)×𝑚

+ 𝑈
𝑇×𝑚

  , 𝑈~𝑀𝑉𝑁(0, Σ).     (2) 

The coefficients for the system of the reduced form model are estimated with the following 

estimators: 

�̂� = (𝛹−1 + 𝑋 ′𝑋)−1(𝛹−1�̄� + 𝑋 ′𝑌)       (3) 

𝛴 = 𝑇−1(𝑌 ′𝑌 − �̂�′(𝑋 ′𝑋 + 𝛹−1)�̂� + �̄� ′𝛹−1�̄� + �̄�),     (4) 

where the Normal-inverse Wishart prior for the coefficients is 

 𝛽/𝛴~𝑁(�̄�, 𝛹) and Σ~𝐼𝑊(�̄�, 𝑣).       (5) 

This representation translates the prior form proposed by Sims and Zha from the structural 

model to the reduced form (Brandt and Freeman (2006, 2009) and Sims and Zha (1998, 

1999)).   

 

The procedure for BVAR with Sims-Zha prior is as follows:  

Consider the following (identified) dynamic simultaneous equation model,  

∑ 𝑦𝑡−𝑙
1×𝑚

𝑝
𝑙=0 𝐴𝑙

𝑚×𝑚
= 𝑑

1×𝑚
+ 휀𝑡

1×𝑚
 , t = 1,2, . . .T     (6) 
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This is an m-dimensional VAR for a sample of size, T, with yt a vector of observations at 

time, t, Al is the coefficient matrix for the lth lag, p is the maximum number of lags (assumed 

known), d is a vector of constant and 휀𝑡, a vector of normal structural shocks such that  

𝛦[휀𝑡/𝑦𝑡−𝑠, 𝑠 > 0] = 0
1×𝑚 

  and Ε[휀𝑡
′/𝑦𝑡−𝑠, 𝑠 > 0] = 𝐼

𝑚×𝑚
. 

The structural model can be transformed into a multivariate regression by defining A0 as the 

contemporaneous conditions of the series and A+ as a matrix of the coefficients on the lagged 

variables by YA0 + XA+=E where Y is T × m, A0 is m×m, X is T×(mp+1), A+ is (mp+1) ×m 

and E is T×m matrix. To define the VAR in a compact form, 

𝑎0 = 𝑣𝑒𝑐(𝐴0),  𝑎+ = 𝑣𝑒𝑐

[
 
 
 
 
 
−𝐴1

.

.

.
−𝐴𝑝

𝑑 ]
 
 
 
 
 

, 𝐴 = (
𝐴0

𝐴+
)  ,  𝑎 = 𝑣𝑒𝑐(𝐴). 

The VAR model can then be written as a linear projection of the residual by letting Z =[Y 

X], and 𝐴 = [𝐴0/𝐴+]′ is a conformable stacking of the parameters in A0 and A+. 

        YA0 + XA+ = E        (7) 

                   ZA = E.                           (8) 

In order to derive the Bayesian estimator for this structural equation model, we have to 

examine the (conditional) likelihood function for normally distributed residuals  

𝐿(𝑌/𝐴) ∝ |𝐴0|
𝑇 𝑒𝑥𝑝[ − 0.5𝑡𝑟(𝑍𝐴)′(𝑍𝐴)] 

∝ |𝐴0|
𝑇 𝑒𝑥𝑝[ − 0.5𝑎′(𝐼 ⊗ 𝑍 ′𝑍)𝑎].       (9) 

The prior overall of the structural parameters has the form, 𝜋(𝑎) = 𝜋(𝑎+/𝑎0)𝜋(𝑎0) such 

that  

𝜋(𝑎) = 𝜋(𝑎0)𝜑(�̃�+, 𝛹),        (10) 

�̃�+ denotes the mean parameters in the prior for a+, 𝛹 is the prior covariance for �̃�+ and 𝜑( ) 

is a multivariate normal density. The posterior for the coefficients is then 

𝑞(𝐴) ∝ 𝐿(𝑌/𝐴)𝜋(𝑎0)𝜑(�̃�+, 𝛹) ∝ 𝜋(𝑎0)|𝐴0|
𝑇|𝜓|−0.5 × 𝑒𝑥𝑝[ − 0.5(𝑎0

′ (𝐼 ⊗ 𝑌 ′𝑌))𝑎0 

−2𝑎+
′ (𝐼 ⊗ 𝑋 ′𝑌)𝑎0 + 𝑎+

′ (𝐼 ⊗ 𝑋 ′𝑋)𝑎+ + �̃�+
′ 𝛹�̃�+)].    (11) 

The posterior is conditional multivariate normal since the prior has a conjugated form. In this 

case, the posterior can be estimated by a multivariate seeming unrelated regression (SUR) 

model. The forecast and inferences can be generated by exploiting the multivariate normality 

of the posterior distribution of the coefficients. The normal conditional prior for the mean of 

the structural parameters is given by 𝐸(𝐴+/𝐴0) = [
𝐴0

0
] while 𝑉(𝐴+/𝐴0) = 𝛹is the prior 

covariance matrix for �̃�+. Though complicated, it is specified to reflect the following general 

beliefs and facts about the series being model. The summary of the Sims-Zha prior is given 

in Table 2. 

Table 2: Hyperparameters of Sims-Zha reference prior 

Parameter       Range           Interpretation  

𝜆0                   [0,1]               Overall scale of the error covariance matrix 

𝜆1>0                                      Standard deviation around A1 (persistence) 

𝜆2                   =1                  Weight of own lag versus other lags 

𝜆3>0                                      Lag decay 

𝜆4                   ≥ 0                  Scale of standard deviation of intercept 

𝜆5                   ≥ 0                  Scale of standard deviation of exogenous variable coefficients 
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µ5                   ≥ 0                 Sum of coefficients/Cointegration (long-term trends) 
µ6                   ≥ 0                 Initial observations/dummy observation (impacts of initial conditions) 

v                     > 0                 Prior degrees of freedom 

Source: Brandt and Freeman (2006) 

The Bayesian Vector Autoregressive Model with exogenous variable is known as the 

BVARX (p,s) model. BVARX simply refers to a BVAR-model with suitable lag restrictions 

on the exogenous variables of the model (Anttonen, 2019 and Cuevas and Quilis, 2016). The 

form of the BVARX (p,s) model can be given as  

𝑦𝑡 = 𝛿 + ∑ 𝜑𝑖
𝑝
𝑖=1 𝑦𝑡−1 + ∑ 𝛩𝑖

𝑠
𝑖=0 𝑋𝑡−1 + 휀𝑡      (12) 

where 𝑦𝑡  is the endogenous variables, 𝑦𝑡−1 is lag of the endogenous variables, 𝑋𝑡−1 is lag of 

the exogenous variables, 𝛿 is vector of constants, 𝜑𝑖  is the matrix of coefficients of the lag 

of endogenous variables, 𝛩𝑖  is the matrix of coefficients of the lag exogenous variables and 

휀𝑡  is the error terms. The parameter estimates can be obtained by representing the general 

form of the multivariate linear model, 

𝑦 = (𝑋 ⊗ 𝐼𝑡)𝛽 + 𝑒         (12) 

The prior means for the AR coefficients are the same as those of the BVAR(p). The prior 

means for the exogenous coefficients are set to zero. 

2.3.2 The BVARX prior 

This study employed the Normal-Inverse Wishart prior. The Normal-inverse-Wishart 

Distribution (also known as Gaussian-inverse-Wishart distribution) is a multivariate four-

parameter family of continuous probability distributions. It is the conjugate prior of a 

multivariate normal distribution with unknown mean and covariance matrix (the inverse of 

the precision matrix). Given (𝜇, 𝛴) has a normal-inverse-Wishart distribution denoted as 

(𝜇, 𝛴)~𝑁𝐼𝑊(𝜇0, 𝜆, 𝛹, 𝜈), the probability density function (pdf) is given as 𝑓(𝜇, 𝛴/

𝜇0, 𝜆, 𝛹, 𝜈) = 𝑁(𝜇/𝜇0,
1

𝜆
𝛴)𝑊−1(𝛴/𝛹, 𝜈) (Murphy, 2007 and Adenomon and Oduwole, 

2022). Here, the mean is normal while the standard deviation follows inverse Wishart 

distribution. 

2.3.3 Model Specifications  

The six (6) versions of Sims-Zha Bayesian VARX model given below: 

BVARX1 = (𝜆0 = 0.6, 𝜆1 = 0.1, 𝜆3 =  1, 𝜆4 =  0.1, 𝜆5 =  0.07, 𝜇5 = 𝜇6 = 5) 

BVARX2 = (𝜆0 = 0.8, 𝜆1 = 0.1, 𝜆3 =  1, 𝜆4 =  0.1, 𝜆5 =  0.07, 𝜇5 = 𝜇6 = 5) 

BVARX3 = (𝜆0 = 0.6, 𝜆1 = 0.15, 𝜆3 =  1, 𝜆4 =  0.15, 𝜆5 =  0.07, 𝜇5 = 𝜇6 = 2) 

BVARX4 = (𝜆0 = 0.8, 𝜆1 = 0.15, 𝜆3 =  1, 𝜆4 =  0.15, 𝜆5 =  0.07, 𝜇5 = 𝜇6 = 2) 

BVARX5 = (𝜆0 = 0.9, 𝜆1 = 0.1, 𝜆3 =  1, 𝜆4 =  0.1, 𝜆5 =  0.07, 𝜇5 = 𝜇6 = 2) 

   BVARX6 = (𝜆0 = 0.9, 𝜆1 = 0.15, 𝜆3 =  1, 𝜆4 =  0.15, 𝜆5 =  0.07, 𝜇5 = 𝜇6 = 5), 

where nµ is prior degrees-of-freedom given as m+1 where m is the number of variables in 

the multiple time series data. In this work, nµ is 3 (that is, two (2) time series variables plus 

1(one)). 

3. Results and Discussions  

The data used in study were simulated in R software and analyzed using MSBVAR source 

code (package) in R (Brandt, 2012). Ten collinearity levels: 𝜌 = -0.99, -0.95, -0.9, -0.85, -

0.8, 0.8, 0.85, 0.9, 0.95 and 0.99 for the exogenous variables as 𝑋𝑖𝑡~𝑁(0, 1) for i=1,2 were 

considered. The experiment was repeated 10,000 times for the following time series lengths: 
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8, 16, 32 and 50. The Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) 

were used to adjudge the models. Table 3A presents the performances of the BVARX model 

when collinearity levels are negative for T = 8. There are evidences that the RMSE and MAE 

values fluctuate for the BVARX model as the collinearity levels increased (Adenomon and 

Oyejola, 2014). 

 

Table 3A: The performance of BVARX models for negative collinearity using RMSE 

and MAE when T = 8 

 -0.99 -0.95 -0.9 -0.85 -0.8 

BVAR 

Models 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX

1 

BVARX

2 

BVARX

3 

BVARX

4 

BVARX

5 

BVARX

6 

3.13599

8 

3.11404

8 

2.92336

5 

2.81751

9 

2.91743

3 

3.05924

6 

2.08533

1 

2.08612

7 

2.03478

0 

2.00184

2 

2.03347

5 

2.08666

5 

3.13910

9 

3.08705

5 

2.93294

2 

2.80840

1 

2.91756

8 

3.06211

8 

2.09033

7 

2.06506

8 

2.04540

1 

1.99316

3 

2.03116

4 

2.08687

4 

3.13314

3 

3.11815

7 

2.93328

3 

2.80709

0 

2.91845

8 

3.05622

6 

2.08319

7 

2.09207

3 

2.04296

7 

1.98933

1 

2.03453

4 

2.08671

4 

3.13315

3 

3.10059

4 

2.92827 

2.79795

9 

2.91888

8 

3.05059

2 

2.08208

0 

2.07858

2 

2.04072 

1.98603

2 

2.03386

8 

2.07754

5 

3.12540

0 

3.10190

9 

2.93435

7 

2.79657

4 

2.91385

5 

3.05772

9 

2.07730

3 

2.07872

1 

2.04589

8 

1.98353

9 

2.02914

2 

2.08534

5 

 

Table 3B: The Ranks of the performance of BVARX models for negative collinearity 

using RMSE and MAE when T = 8 

BVAR 

Models 

-0.99 -0.95 -0.9 -0.85 -0.8 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 

6 

5 

3 

1 

2 

4 

4 

5 

3 

1 

2 

6 

6 

5 

3 

1 

2 

4 

6 

4 

3 

1 

2 

5 

6 

5 

3 

1 

2 

4 

4 

6 

3 

1 

2 

5 

6 

5 

3 

1 

2 

4 

6 

5 

3 

1 

2 

4 

6 

5 

3 

1 

2 

4 

4 

5 

3 

1 

2 

6 

Table 3B presents the ranks of the performances of the BVARX model when collinearity 

levels are negative for T = 8. At all levels of collinearity, BVARX4 was superior while 

BVARX1 was worst using RMSE and MAE values (Anttonen, 2019). 

 

Table 4A: The performance of BVARX models for positive collinearity using RMSE 

and MAE when T = 8 

BVAR 

Models 

0.8 0.85 0.9 0.95 0.99 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

3.130429 

3.107252 

2.932088 

2.801023 

2.914694 

2.079686 

2.085717 

2.044029 

1.986722 

2.030928 

3.120308  

3.111771 

2.936135  

2.803246 

2.903678 

2.073409 

2.084990 

2.046646 

1.990417 

2.020362 

3.129439 

3.091810  

2.933603 

2.812059 

2.917399  

2.079585 

2.070154 

2.043277 

1.996623 

2.032837 

3.128001  

3.111621 

2.930062  

2.802176 

2.928287 

2.080009 

2.086553 

2.039985 

1.986436 

2.042207 

3.139624 

3.100658 

2.926647 

2.802425  

2.907373 

2.088267 

2.077432 

2.037369 

1.987734 

2.026480 
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BVARX6 3.052600  2.079622 3.051955  2.082724 3.068258  2.095702 3.062436  2.088269 3.059850  2.087281 

Table 4A presents the performances of the BVARX model when collinearity levels are 

positive for T = 8. There are evidences that the RMSE and MAE values fluctuate for the 

BVARX model as the collinearity levels increased (Adenomon and Oyejola, 2014). Table 

4B presents the ranks of the performances of the BVARX model when collinearity levels are 

positive for T = 8. At all levels of collinearity, BVARX4 was superior while BVARX1 was 

worst using RMSE and MAE values (Anttonen, 2019). 

 

Table 4B: The Ranks of the performance of BVARX models for positive collinearity 

using RMSE and MAE when T = 8 

BVAR 

Models 

0.8 0.85 0.9 0.95 0.99 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 

6 

5 

3 

1 

2 

4 

5 

6 

3 

1 

2 

4 

6 

5 

3 

1 

2 
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4 
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1 

2 

6 

6 

5 

3 

1 

2 

4 

4 

5 

2 

1 

3 

6 

6 

5 

3 

1 

2 

4 

6 

4 

3 

1 

2 

5 

 

Table 5A: The performance of BVARX models for negative collinearity using RMSE 

and MAE when T=16 

 -0.99 -0.95 -0.9 -0.85 -0.8 

BVAR 

Models 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 

2.812930 

2.760303 

2.585100 

2.454330 

2.579854 

2.693967 

2.031671 

2.004857 

1.919529 

1.846693 

1.916666 

1.980039 

2.798588 

2.786362 

2.590900 

2.459890 

2.584833 

2.705235 

2.018672 

2.022474 

1.926203 

1.851712 

1.923105 

1.990007 

2.813643 

2.773796 

2.596321 

2.451674 

2.586140 

2.701032 

2.033646 

2.014619 

1.929495 

1.842699 

1.920627 

1.984787 

2.807245 

2.775748 

2.588953 

2.460181 

2.586319 

2.709144 

2.023778 

2.014898 

1.925736 

1.850194 

1.922999 

1.994021 

2.811811 

2.772198 

2.583053 

2.46243 

2.580663 

2.697146 

2.030606 

2.013332 

1.919715 

1.85481 

1.918171 

1.981430 

Table 5A presents the performances of the BVARX model when collinearity levels are 

negative for T=16. There are evidences that the RMSE and MAE values fluctuate for the 

BVARX model as the collinearity levels increased (Adenomon and Oyejola, 2014). 

 

Table 5B: The Ranks of the performance of BVARX models for negative collinearity 

using RMSE and MAE when T=16 

BVAR 

Models 

-0.99 -0.95 -0.9 -0.85 -0.8 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 

6 

5 

3 

1 

2 

4 

6 

5 

3 

1 

2 

4 

6 

5 

3 

1 

2 
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3 

1 

2 
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6 

5 

3 

1 

2 

4 

6 

5 

3 

1 

2 

4 

6 

5 

3 

1 

2 

4 
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Table 5B presents the ranks of the performances of the BVARX model when collinearity 

levels are negative for T=16. At all levels of collinearity, BVARX4 was superior while 

BVARX1 was worst using RMSE and MAE values (Anttonen, 2019). Table 6A presents the 

performances of the BVARX model when collinearity levels are positive for T=16. There 

are evidences that the RMSE and MAE values fluctuate for the BVARX model as the 

collinearity levels increased (Adenomon and Oyejola, 2014). 

 

Table 6A: The performance of BVARX models for positive collinearity using RMSE 

and MAE when T=16 

BVAR 

Models 

0.8 0.85 0.9 0.95 0.99 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 

2.798924 

2.766266 

2.582682 

2.460256 

2.570291 

2.705103 

2.019183 

2.007922 

1.917906 

1.852220 

1.910370 

1.988580 

2.806624 

2.770482 

2.574136 

2.472832 

2.593510 

2.700302 

2.026992 

2.012697 

1.911195 

1.864006 

1.929127 

1.984756 

2.809248 

2.783641 

2.588722 

2.454016 

2.587335 

2.705028 

2.027360 

2.019675 

1.922973 

1.845401 

1.922978 

1.989710 

2.806848 

2.779531 

2.577769 

2.452920 

2.584202 

2.706146 

2.024647 

2.019956 

1.915393 

1.844403 

1.920864 

1.992228 

2.804263 

2.784787 

2.594541 

2.456687 

2.571691 

2.700475 

2.023614 

2.021780 

1.927690 

1.848319 

1.908511 

1.985611 

 

Table 6B: The Ranks of the performance of BVARX models for positive collinearity 

using RMSE and MAE when T=16 

BVAR Models 0.8 0.85 0.9 0.95 0.99 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 

6 

5 

3 

1 

2 

4 

6 

5 

3 

1 

2 

4 

6 

5 
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4 

 

Table 6B presents the ranks of the performances of the BVARX model when collinearity 

levels are positive for T = 8. At all levels of collinearity, BVARX4 was superior while 

BVARX1 was worst using RMSE and MAE values (Anttonen, 2019). 

 

Table 7A: The performance of BVARX models for negative collinearity using RMSE 

and MAE when T=32 

BVAR 

Models 

-0.99 -0.95 -0.9 -0.85 -0.8 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 

2.573611 

2.529589 

2.294212 

2.136782 

2.284004 

2.409389 

1.945541 

1.919738 

1.768976 

1.659607 

1.761010 

1.847613 

2.575013 

2.535785 

2.287775 

2.135215 

2.281137 

2.406261 

1.946376 

1.925813 

1.762924 

1.658982 

1.759729 

1.844927 

2.572503 

2.528776 

2.290950 

2.134008 

2.281948 

2.422617 

1.945797 

1.921877 

1.766869 

1.657419 

1.758492 

1.856242 

2.577942 

2.530915 

2.291899 

2.132074 

2.282447 

2.419723 

1.950560 

1.923519 

1.767804 

1.655881 

1.759653 

1.855705 

2.574886 

2.534221 

2.282951 

2.138255 

2.289162 

2.417804 

1.944586 

1.927142 

1.759849 

1.661601 

1.765569 

1.854783 

 

Table 7A presents the performances of the BVARX model when collinearity levels are 

negative for T=32. There are evidences that the RMSE and MAE values fluctuate for the 
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BVARX model as the collinearity levels increased (Adenomon and Oyejola, 2014). Table 

7B presents the ranks of the performances of the BVARX model when collinearity levels are 

negative for T=32. At all levels of collinearity, BVARX4 was superior while BVARX1 was 

worst using RMSE and MAE values (Anttonen, 2019). 

Table 7B: The Ranks of the performance of BVARX models for negative collinearity 

using RMSE and MAE when T=32 

BVAR 

Models 

-0.99 -0.95 -0.9 -0.85 -0.8 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 
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4 

 

Table 8A: The performance of BVARX models for positive collinearity using RMSE 

and MAE when T=32 

BVAR 

Models 

0.8 0.85 0.9 0.95 0.99 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 

2.569286  

2.53216  

2.286717  

2.135035  

2.281912  

2.416885  

1.942331 

1.92364 

1.763284 

1.657249 

1.758540 

1.854094 

2.577556  

2.532265  

2.299468  

2.131751  

2.276432  

2.406085  

1.948702 

1.922695 

1.772855 

1.656430 

1.756494 

1.845153 

2.569850  

2.533177  

2.286785  

2.135563  

2.284687  

2.419983  

1.942587 

1.923521 

1.761223 

1.659404 

1.761507 

1.856581 

2.577333  

2.537227  

2.287450  

2.133758  

2.284790  

2.414366  

1.949878 

1.926659 

1.763609 

1.656614 

1.760876 

1.850101 

2.567758 

2.534564 

2.283513 

2.138753 

2.290296 

2.414263  

1.941346 

1.925990 

1.760712 

1.660388 

1.766157 

1.851353 

 

Table 8A presents the performances of the BVARX model when collinearity levels are 

positive for T=32. There are evidences that the RMSE and MAE values fluctuate for the 

BVARX model as the collinearity levels increased (Adenomon and Oyejola, 2014). 

 

Table 8B: The Ranks of the performance of BVARX models for positive collinearity 

using RMSE and MAE when T=32 

BVAR 

Models 

0.8 0.85 0.9 0.95 0.99 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 
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Table 8B presents the ranks of the performances of the BVARX model when collinearity 

levels are positive for T=8. At all levels of collinearity, BVARX4 was superior while 

BVARX1 was worst using RMSE and MAE values (Anttonen, 2019). Table 9A presents the 

performances of the BVARX model when collinearity levels are negative for T=50. There 

are evidences that the RMSE and MAE values fluctuate for the BVARX model as the 

collinearity levels increased (Adenomon and Oyejola, 2014). 
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Table 9A: The performance of BVARX models for negative collinearity using RMSE 

and MAE when T=50 

BVAR 

Models 

-0.99 -0.95 -0.9 -0.85 -0.8 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 

2.464633 

2.412594 

2.104866 

1.929297 

2.100805 

2.248217 

1.900409 

1.868663 

1.644709 

1.513688 

1.641145 

1.752875 

2.462487 

2.412341 

2.100592 

1.928439 

2.096969 

2.244509 

1.899269 

1.868414 

1.642310 

1.513507 

1.639120 

1.749916 

2.469692 

2.412919 

2.101780 

1.928123 

2.100839 

2.249148 

1.904271 

1.868585 

1.642127 

1.512737 

1.640332 

1.753661 

2.469753 

2.410355 

2.102783 

1.930149 

2.101526 

2.246784 

1.905415 

1.867142 

1.643771 

1.514230 

1.641708 

1.751755 

2.462691 

2.410524 

2.103168 

1.928861 

2.099157 

2.251163 

1.898388 

1.866744 

1.644327 

1.513064 

1.639830 

1.755105 

 

Table 9B: The Ranks of the performance of BVARX models for negative collinearity 

using RMSE and MAE when T=50 

BVAR 

Models 

-0.99 -0.95 -0.9 -0.85 -0.8 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 
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Table 9B presents the ranks of the performances of the BVARX model when collinearity 

levels are negative for T=50. At all levels of collinearity, BVARX4 was superior while 

BVARX1 was worst using RMSE and MAE values (Anttonen, 2019). 
 

Table 10A: The performance of BVARX models for positive collinearity using RMSE 

and MAE when T=50 

BVAR 

Models 

0.8 0.85 0.9 0.95 0.99 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 

2.466963 

2.412528 

2.103166 

1.930646 

2.103419 

2.247231 

1.902444 

1.867885 

1.644145 

1.514738 

1.644219 

1.751503 

2.468374 

2.408923 

2.103190 

1.927729 

2.101458 

2.251874 

1.903039 

1.865802 

1.643362 

1.512934 

1.642388 

1.755360 

2.471223 

2.414330 

2.098381 

1.927781 

2.101071 

2.245004 

1.906307 

1.870976 

1.640549 

1.513071 

1.642288 

1.750137 

2.465040 

2.411667 

2.102128 

1.927721 

2.098534 

2.246979 

1.900589 

1.866118 

1.643800 

1.512451 

1.640110 

1.750223 

2.467097 

2.416476 

2.102837 

1.930611 

2.099307 

2.249725 

1.903920 

1.871287 

1.643264 

1.515146 

1.640598 

1.754567 

Table 10A presents the performances of the BVARX model when collinearity levels are 

positive for T=50. There are evidences that the RMSE and MAE values fluctuate for the 

BVARX model as the collinearity levels increased (Adenomon and Oyejola, 2014). Table 

10B presents the ranks of the performances of the BVARX model when collinearity levels 

are positive for T=50. At all levels of collinearity, BVARX4 was superior while BVARX1 

was worst using RMSE and MAE values (Anttonen, 2019). Lastly, the values of the RMSE 

and MAE for the BVARX models reduced as the time series length increased which is similar 

to reality (Adenomon et al. 2015 and 2016).         
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Table 10B: The Ranks of the performance of BVARX models for positive collinearity 

using RMSE and MAE when T=50 

BVAR 

Models 

0.8 0.85 0.9 0.95 0.99 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

BVARX1 

BVARX2 

BVARX3 

BVARX4 

BVARX5 

BVARX6 

 6 
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 4. Conclusion 

This paper examined the forecast performance of six (6) versions of Bayesian Vector 

Autoregressive models with exogenous variables (BVARX) using normal-inverse Wishart 

prior when collinearity exist between the exogenous variables for small sample situations. 

The BVARX models where denoted as BVARX1, BVARX2, BVARX3, BVARX4, 

BVARX5 and BVARX6. To achieve this, VAR(2) model was used to simulate bivariate time 

series from a stable process while bivariate exogenous variables were simulated from a 

standard normal distribution to possess the following collinearity levels (-0.99, -0.95, -0.9, -

0.85, -0.8, 0.8, 0.85, 0.9, 0.95, 0.99). The experiment was carried out in R environment and 

repeated 10,000 times for the following time series lengths (8, 16, 32 and 50). The Root 

Mean Square Error (RMSE) and the Mean Absolute Error (MAE) were used to adjudge the 

models.  In all the scenarios considered, there are evidences that the RMSE and MAE values 

fluctuate for the BVARX model as the collinearity levels increased while BVARX4 

performed best while BVARX1 performed worst in all the collinearity levels and time series 

length. Lastly, RMSE and MAE values of the BVARX models are higher with negative 

collinearity compared to positive collinearity while the values of RMSE and MAE for the 

BVARX model decreased as the time series length increased. 
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