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size three 

P. E. Chigbu, E. I. Mba and E. C. Ukaegbua 

Department of Statistics, University of Nigeria, Nsukka, Nigeria 

Semi-Latin squares with side six and block size three, constructed by superimposing each of the 

9408 reduced Latin squares of order six on each of certain (6 × 6) 2⁄  semi-Latin squares, are 

here presented. The aim was to identify optimal and/or efficient semi-Latin square(s) of order 

six from the 9408 reduced Latin squares of order six. A Microsoft Excel program was used to 

facilitate the construction by superposition and the statistical evaluation of the corresponding 

semi-Latin squares of sides six in blocks of size three by computing their A, D, E and MV 

statistical efficiency measures A total of 65856 semi-Latin squares with side six and blocks of 

size three were constructed and evaluated. One of the semi-Latin squares was identified to be 

A-optimal, D-optimal, E-optimal and MV-optimal. Also, with respect to the efficiency measures, 

the same optimal semi-Latin square is the most efficient of the 65856 semi-Latin squares. This 

efficient semi-Latin square which has canonical efficiency factors, 0.5980 with multiplicity 

three, 0.6667 with multiplicity ten, 0.8464 with multiplicity three and 1.0 with multiplicity one, 

is a simple orthogonal multi-array (SOMA) of order six; specifically denoted by SOMA(3, 6). 

Also, this optimal and efficient semi-Latin square has the same A, D, E and MV statistical 

efficiency values with the two indecomposable SOMA(3, 6) developed by Soicher as well as the 

efficient semi-Latin square of order six by Bailey. 

 

Keywords: canonical efficiency; contrasts; incidence matrix; reduced Latin squares; regular 
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1. Introduction 

 An (𝑛 × 𝑛) 𝑘⁄  semi-Latin square with n rows, n columns and k plots, according to 

Bailey and Chigbu (1997) and Soicher (2012a), has 𝑛2 cells (called blocks) in a square array 

such that each block has k plots (letters) such that there are t = nk treatments which are 

allocated to the plots in such a way that each treatment occurs once in each row and once in 

each column. We note that a semi-Latin square is considered suitable for comparing t 

treatments if the rows and columns of the (𝑛 × 𝑛) 𝑘⁄  array are considered as nuisance factors 

(Bailey and Royle, 1997). When k Latin squares, each of order n, are given, their superposition 

is the semi-Latin square with parameters, n, k and t, formed by putting into each cell of the 

semi-Latin square, k mutually disjoint treatments out of the t treatments. Bailey (1990) 

constructed twelve-treatment semi-Latin squares in blocks of size two with the view to 

obtaining an efficient semi-Latin square for the parameters, n = 6 and k = 2. This was achieved 

by considering the twelve faces of a dodecahedron which forms an association scheme with 

three associate classes. The adjacency matrices of the inherent incomplete-block designs of 

the semi-Latin squares and their corresponding eigenvalues were used to estimate the 

efficiency factors of the semi-Latin squares. It was recommended in Bailey (1990) that the 

upper bound for the efficiency factor of a (6 × 6) 2⁄  semi-Latin square should be 0.5238, 

which is the harmonic mean efficiency factor of an optimal (6 × 6) 2⁄  Trojan square, if it 
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were to exist. 

 

Also, Bailey and Royle (1997) examined the twelve-treatment semi-Latin squares in blocks 

of size two by considering only those semi-Latin squares whose quotient block designs are 

regular-graph designs since it is widely believed that all optimal regular-graph designs are 

optimal overall. The designs were constructed using orthogonal one-factorizations of the 

regular graph design. This procedure is based on the fact that the one-factorizations of the 

rows and columns of a semi-Latin square of a regular graph have the property that they are 

orthogonal. In this regard, the identification of one-factor leads to the location of its 

orthogonal mate. 

 

Consider, for instance, a regular graph design, 𝛺, of degree six on twelve vertices as the 

treatment-concurrence graph of a semi-Latin square, 𝛬, where the thirty-six treatment entries 

of 𝛬 are determined solely by the thirty-six edges of 𝛺. The graph, 𝛺, is regular if all vertices 

are of the same degree (Kreher et al., 1996). The concepts of one-factor and one-factorization 

were instrumental in realizing the treatment-concurrence graph by Bailey and Royle (1997). 

Also, Meszka and Tyniec (2019) defined one-factor of a graph, 𝛺, as a regular spanning 

subgraph of degree one while a one-factorization of 𝛺 is the partition of the edges of 𝛺 into 

one-factors. Precisely, each row and column of 𝛬 is a one-factor of 𝛺 while the collections of 

rows of 𝛬 is a one-factorization and so also is the collection of columns of 𝛬. In order to have 

a one-factorization, 𝛺 must have even number of vertices and must be regular. Bailey and 

Royle (1997) used two orthogonal one-factorizations of a regular graph design, 𝛺, in the 

search for optimal semi-Latin square of side six and block size two. Each one-factorization is 

the orthogonal mate of the other since they have one common edge. For further discussions 

on the orthogonality of two one-factorizations of a regular graph design, see Meszka and 

Tyniec (2019). 

 

In the works of Bailey and Royle (1997), seven distinct (6 × 6) 2⁄  semi-Latin squares (see 

Figures 1 – 7) were in focus. These seven semi-Latin squares were evaluated using the A, D, 

E and MV criteria to ascertain their efficiencies. Any of the designs which maximize any of 

the efficiency criteria was considered to be optimal. Hence, the optimal (6 × 6) 2⁄  semi-Latin 

squares, with respect to each of the A, D, E and MV efficiency criteria, were further classified 

in such a way that the best three semi-Latin squares with the highest A-optimal values belong 

to one class, the best three with the highest D-optimal values belong to another class, and so 

on. 

 

The first set of (6 × 6) 3⁄  semi-Latin squares were classified by Phillips and Wallis (1996) 

up to permutations of rows and columns, and renaming symbols; that is, strong isomorphism. 

There was, however, a classification mistake in Phillips and Wallis (1996) which led to the 

omission of one of the classes while repeating a particular class twice. This was pointed out 

in the application of the (6 × 6) 3⁄  semi-Latin squares to tournament problems by Preece and 

Phillips (2002). Also, Soicher (2012a) also presented another classification of efficient 

(6 × 6) 3⁄  semi-Latin squares, which he obtained independently in 1997 as simple orthogonal 
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multi-arrays (SOMA). Soicher (2012a) presented four distinct efficient (6 × 6) 3⁄  semi-Latin 

squares with their A, D, E and MV statistical efficiency measures, and grouped the four 

(6 × 6) 3⁄  semi-Latin squares into two decomposable and two indecomposable SOMAs. One 

of the optimal (6 × 6) 3⁄  semi-Latin squares of Soicher (2012a) was made by superimposing 

a (6 × 6) standard Latin square presented as Figure 13 in Bailey (1992) on a (6 × 6) 2⁄  semi-

Latin square, also presented as Figure 12 in Bailey (1992). 

 

In this paper, we present another efficient (6 × 6) 3⁄  semi-Latin square which has the same 

values of the A, D, E and MV statistical efficiency measures of the two decomposable SOMAs 

presented by Soicher (2012a). The (6 × 6) 3⁄  semi-Latin squares given in this work were 

constructed by superimposing each of the reduced (6 × 6) Latin squares on each of the seven 

(6 × 6) 2⁄  semi-Latin squares of Bailey and Royle (1997).  

2. Construction Procedure for (𝟔 × 𝟔) 𝟑⁄  semi-Latin Squares 

The seven distinct (6 × 6) 2⁄  semi-Latin squares studied by Bailey and Royle (1997) are 

pivotal in the construction of the (6 × 6) 3⁄  semi-Latin squares here and are identified in this 

study as 𝛥1, 𝛥2, 𝛥3,  𝛥4,  𝛥5,  𝛥6 and 𝛥7 (see Figures 1, 2, 3, 4, 5, 6 and 7, respectively). 

 

6     15 8      17 10     7 12      9 14    11 16    13 

8     10 13    15 12   14 17     7 16     6 9      11 

11   13 10    12 15    17 14    16 7       9 6       8 

9     14 11    16 13     6 15     8 17    10 7       12 

7     16 9       6 11     8 13    10 15    12 17    14 

12   17 14     7 16     9 6      11 8     13 10    15 

    Figure 1: The Howell Design, 𝜟𝟏 

 

6       7 14    16 10    11 9      12 8       17 13    15 

9      11 6       8 13    16 7      14 12     15 10    17 

12    14 11    15 6       9 13    17 7       10 8      16 

15    17 7      13 8      12 6      10 9       16 11    14 

8      13 10    12 14    17 15    16 6       11 7       9 

10    16 9      17 7      15 8      11 13     14 6     12 

   Figure 2: The (𝟔 × 𝟔) 𝟐⁄  semi-Latin square, 𝜟𝟐 

 

6        7 11    15 12    17 8      14 9       13 10    16 

11     16 6       8 13    15 9      12 10     14 7      17 

10     15 12    14 6       9 11    17 7       16 8      13 

9       17 7      13 8      16 6      10 12     15 11    14 

8       12 10    17 7      14 13    16 6       11 9      15 

13     14 9      16 10    11 7      15 8       17 6      12 

   Figure 3: The (𝟔 × 𝟔) 𝟐⁄  semi-Latin square, 𝜟𝟑 

 

 

 

6        7 11    16 8      13 10    15 12     17 9      14 
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10     17 8        9 7      15 14    16 11     13 6      12 

9       12 6      14 10    11 7      17 8       16 13    15 

11     14 15    17 6      16 12    13 7        9 8      10 

13     16 10    12 9      17 6       8 14     15 7      11 

8       15 7      13 12    14 9      11 6       10 16    17 

   Figure 4: The (𝟔 × 𝟔) 𝟐⁄  semi-Latin square,𝛥4 

 

6      11 10    16 9      14 8      13 12      15 7      17 

10    15 8      14 6      13 12    17 7        16 9      11 

7      14 6      12 10    17 9      16 8        11 13    15 

8      17 7      13 11    16 6     15 9        10 12    14 

9      12 11    17 8      15 7      10 13      14 6      16 

13    16 9      15 7      12 11    14 6        17 8      10 

   Figure 5: The (𝟔 × 𝟔) 𝟐⁄  semi-Latin square, 𝛥5 

 

6        7 13    15 8      16 11    14 10    12 9      17 

14      16 6        8 11    17 9      12 7      15 10    13 

8        12 10    16 6       9 7      17 13    14 11    15 

13      17 7      11 12    15 6      10 9      16 8      14 

9        15 12    17 10    14 8      13 6      11 7      16 

10      11 9      14 7      13 15    16 8      17 6      12 

   Figure 6: The (𝟔 × 𝟔) 𝟐⁄  semi-Latin square, 𝛥6 

 

6       7 12    13 14    16 8     17 9     15 10    11 

13    16 6       8 7      15 11    14 10    12 9     17 

8      11 10    16 6       9 12    15 13    17 7     14 

14    17 9     11 8      12 6     10 7      16 13    15 

9     12 14    15 10    17 7      13 6      11 8      16 

10    15 7      17 11    13 9     16 8     14 6     12 

   Figure 7: The (𝟔 × 𝟔) 𝟐⁄  semi-Latin square,𝛥7 

  

The semi-Latin square, 𝛥1, called Howell design, was found by Hung and Mendelsohn (1974) 

and has been studied by Bailey (1997). Seah and Stinson (1987) developed 𝛥4 and 𝛥7 as 

rectangular association schemes of 𝛥1. Based on these original works of Hung and 

Mendelsohn (1974) and Seah and Stinson (1987), Bailey and Royle (1997) constructed the 

other designs, 𝛥2, 𝛥3, 𝛥5 and 𝛥6, using orthogonal one- factorizations. Soicher (2013) 

constructed optimal and efficient (6 × 6) 𝑘⁄  semi-Latin squares for k = 4, 5 and 6, since 

Soicher (2012a) had already addressed the case of efficient (6 × 6) 𝑘⁄  semi-Latin square for 

k = 3. Also, Soicher (2013) provided exact algebraic approaches for comparing the efficiency 

measures of the semi-Latin squares. In this study, we construct all the (6 × 6) 3⁄  semi-Latin 

squares using all the reduced/standard Latin squares in combination with certain (6 × 6) 2⁄  

semi-Latin squares in the literature via superimpositions, and determine the A, D, E and MV 

efficient ones.  

 

We define a Latin square of order n as an (𝑛 × 𝑛) matrix, L, whose entries are taken from a 

set, S, of n symbols (treatments) and which has the property that each symbol from S occurs 
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exactly once in each row and exactly once in each column of L. A Latin square, L, based on 

the natural ordering of numbers as symbols is called a reduced or a standard Latin square 

Denes and Keedwell (1991). There exists 9408 reduced (6 × 6) Latin square McKay (2019). 

A typical (6 × 6) reduced Latin square, denoted by 𝛥0, is shown in Figure 8. 

 

 

0 1 2 3 4 5 

1 0 3 2 5 4 

2 3 4 5 0 1 

3 2 5 4 1 0 

4 5 0 1 2 3 

5 4 1 0 3 2 

    Figure 8: (𝟔 × 𝟔) Latin square, 𝛥0 

 

The combinatorial composition of reduced Latin squares of order six was given by McKay 

and Wanless (2005) as 26 . 3. 72 which gives the 9408 reduced Latin squares. Therefore, the 

total number of semi-Latin squares of order six in blocks of size three from the seven distinct 

(6 × 6) 2⁄  semi-Latin squares, is obtained as 26. 3. 73, which gives 65856. Each of the 9408 

reduced (6 × 6) Latin square was superimposed on each of the seven (6 × 6) 2⁄  semi-Latin 

squares of Bailey and Royle (1997) to obtain all possible 65856 (6 × 6) 3⁄  semi-Latin 

squares. For instance, superimposing 𝛥0 on 𝛥1 gives the (6 × 6) 3⁄  semi-Latin square, 𝛥01, 

presented in Figure 9. A program that runs as a Microsoft Office version 16 Excel Macro 

developed by Chigbu, Mba and Ukaegbu (2021) was used to facilitate the construction of the 

(6 × 6) 3⁄  semi-Latin squares as well as the A, D, E and MV efficiency evaluations which 

took about half-hour of CPU time on Lion Grade, University of Nigeria main server. 

0     6     15 1     8     17 2     10    7 3    12      9 4     14   11 5    16   13 

1     8     10 0    13    15 3     12   14 2    17      7 5     16    6 4     9    11 

2    11    13 3    10    12 4     15   17 5    14     16 0      7     9 1     6     8 

3     9     14 2    11    16 5     13    6 4    15      8 1     17   10 0     7    12 

4     7     16 5     9      6 0     11    8 1    13     10 2     15   12 3    17   14 

5    12    17 4    14     7 1     16    9 0     6      11 3      8    13 2    10   15 

Figure 9: The (𝟔 × 𝟔) 𝟑⁄  semi-Latin squares, 𝛥01 

3. Evaluation for Efficient (𝟔 × 𝟔) 𝟑⁄  semi-Latin squares 

First of all, the incidence matrix of each of the 65856 (6 × 6) 3 ⁄ semi-Latin squares, labelled 

𝑁1 , 𝑁2 , . . . , 𝑁65856, was obtained by 𝑡 × 𝑛2 treatments-by-block matrix whose entry in the tth 

row and bth column is the number of times that each of t treatments occurs in each of the b 

blocks. Here, the treatments take the values, t = 0, 1, 2, . . ., 17 while the blocks take the 

values, b = 1, 2, …, 36. That is, for the entries of the incidence matrix, each block, where 

treatment, t, occurs is represented by 1 while where the treatment, t, does not occur is 

represented by 0, such that the incidence matrix is binary. The information matrices were 

denoted by 𝐶1, 𝐶2, . . . , 𝐶65856 and obtained by the formula, 

𝐶𝑝 = 𝑅𝑝 − 𝑁𝑝𝐾𝑝
−1𝑁𝑝

1, 𝑝 = 1, 2, . . . , 65856  (1) 
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where 𝑅𝑝 = 𝑟𝐼 is a diagonal matrix whose diagonal entries are the number of replications, r, 

of each treatment and I is an identity matrix of size n; 𝑁𝑝 is the incidence matrix described 

above and 𝐾𝑝 = 𝑘𝐼 is also a diagonal matrix whose diagonal entries are block sizes, k.  

 

The canonical efficiency factors of 𝐶𝑝 are the non-zero eigenvalues of the information matrix, 

𝐶𝑝. They are obtained by solving for the roots, 𝜆, of the equation, 

|𝐶𝑝 − 𝜆𝐼| = 0  (2) 

and obtaining all the non-zero values of 𝜆 𝑟⁄ . The efficiency measures, A, D and E are, 

respectively, the harmonic mean, geometric mean and minimum of the canonical efficiency 

factors. The MV-efficiency is not derived from the canonical efficiency factors but it is the 

minimum of the efficiency factors for simple contrasts (Bailey and Royle, 1997). Out of the 

65856 (6 × 6) 3⁄  semi-Latin squares, one design has the highest values for each of the four 

efficiency criteria. This design is given in Figure 10 and it is the most efficient among the 

(6 × 6) 3 ⁄ semi-Latin squares, with the highest respective A, D, E and MV values of 0.6922, 

0.6986, 0.5980 and 0.6586. This semi-Latin square has the same values of the statistical 

efficiency measures, A, D, E and MV, as the two decomposable (6 × 6) 3⁄  simple orthogonal 

multi-arrays (SOMAs) discovered by Soicher (2012a). We now define SOMA and 

decomposable SOMA. A SOMA(k, n), where 𝑘 ≥ 0 and 𝑛 ≥ 2 are integers, according to 

Soicher (2013) and Soicher (1999), is an (𝑛 × 𝑛) 𝑘⁄  semi-Latin square which has the property 

that any two distinct symbols occur together in at most one entry. Let 𝛵 be a SOMA. If there 

exist integers, 𝑢 > 0 and 𝑣 > 0, such that 𝛵 is of type (𝑢, 𝑣), then, 𝛵 is decomposable; 

otherwise, 𝛵 is indecomposable (Soicher, 1999). 

 

Bailey (1992) presented the A, D and E efficiency values of a hypothetical Trojan square with 

thirty-six blocks of size three and the MV efficiency value was identified as the minimum 

simple efficiency measure. The difference between each of the A, D, E and MV efficiency 

values of the semi-Latin square in Figure 10 and each corresponding efficiency value of the 

hypothetical Trojan square in Table 5 of Bailey (1992) are, respectively, 0.0017, 0.0006, 

0.0687 and 0.0081. One could easily see that the efficiency values of Figure 10 are almost the 

same as those of the hypothetical (6 × 6) 3⁄  Trojan square. Moreover, Figure 10 has exactly 

the same A, D, E and MV efficiency values with the (6 × 6) 3⁄  semi-Latin square of Table 5 

in Bailey (1992) and which, according to Bailey (1992), compares with the hypothetical 

Trojan square. According to Bailey (1992), the semi-Latin square of Table 5 was constructed 

by Peter Wilde for use in a 1990 trial at Brooms Barn by superimposing Figure 12 on Figure 

13 in Bailey (1992). Therefore, the semi-Latin square presented in Figure 10 now does not 

only exist but is efficient with respect to the four efficiency measures.  

 

 

0       6       7 1     11      16 2     8         13 3      10     15 4      12       17 5       9      14 

1      10     17 0      8        9 4      7        15 2      14     16 5      11       13 3       6      12 
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2       9      12 4      6       14 0     10       11 5       7      17 3       8        16 1      13     15 

3      11     14 2     15      17 5      6        16 0      12     13 1       7         9 4       8      10  

4      13     16 5     10      12 3      9        17 1       6       8 0      14       15 2       7      11 

5       8      15 3      7       13 1     12       14 4       9      11 2       6       10 0      16     17 

  Figure 10: The Efficient (𝟔 × 𝟔) 𝟑⁄  semi-Latin square 

 

Furthermore, the A, D, E and MV values of the (6 × 6) 3⁄  semi-Latin squares constructed in 

this work were categorized and compared according to the type of (6 × 6) 2⁄  semi-Latin 

squares, 𝛥1,  𝛥2 ,  𝛥3 , 𝛥4 , 𝛥5 , 𝛥6 and 𝛥7, from which they are obtained. The categorization 

and comparisons enabled the identification of the best and worst (6 × 6) 3⁄  semi-Latin 

squares associated to each of the seven (6 × 6) 2⁄  semi-Latin squares, used here for 

construction, based on their efficiencies. The results are presented in Tables 1, 2, 3 and 4, 

respectively, for A, D, E and MV. 

Table 1: A-Efficiency Values 

 Number of Designs Constructed from 

S/N A 𝛥1 𝛥2 𝛥3 𝛥4 𝛥5 𝛥6 𝛥7 

1 0.59 19 0 0 0 1 0 1 
2 0.60 71 2 1 0 19 0 24 
3 0.61 259 11 35 0 144 15 142 

4 0.62 766 111 168 0 698 154 701 
5 0.63 1622 704 675 400 1738 857 1876 
6 0.64 2842 2626 2417 2140 3750 2812 3561 
7 0.65 3102 4086 4243 4438 2601 3954 2593 
8 0.66 723 1795 1739 2047 448 1527 500 
9 0.67 4 73 130 340 9 89 10 
10 0.68 0 0 0 15 0 0 0 
11 0.69 0 0 0 1 0 0 0 

 

The (6 × 6) 2⁄  semi-Latin squares, 𝛥2, 𝛥4, 𝛥3 and 𝛥6, gave the largest number of (6 × 6) 3⁄  

semi-Latin squares in Table 1 with 𝐴 ≥ 0.65 where the only (6 × 6) 3⁄  semi-Latin square  

with 𝑚𝑎𝑥(𝐴) was constructed from 𝛥4. On the other hand, the only (6 × 6) 3⁄  semi-Latin 

squares with 𝑚𝑖𝑛(𝐴) were constructed from 𝛥1, 𝛥5 and 𝛥7. Note that 𝑚𝑖𝑛(. ) and 𝑚𝑎𝑥(. ) are 

used here to represent the minimum and maximum efficiency measures, respectively, obtained 

in this work. Therefore, the best (6 × 6) 3⁄  semi-Latin square in Figure 10 was constructed 

from 𝛥4 while the worst squares were constructed from 𝛥1, 𝛥5 and 𝛥7. From Table 2, the 

values of D of the (6 × 6) 3⁄  semi-Latin squares constructed from 𝛥2, 𝛥3 and 𝛥6 ranged from 

0.65 to 0.69. The range of efficiency values for the (6 × 6) 3⁄  semi-Latin squares constructed 

from 𝛥4 is 𝐷 ≥ 0.67 and the only semi-Latin square with 𝑚𝑎𝑥(𝐷) (Figure 10) is constructed 

from 𝛥4.  

 

 

 

Table 2: D-Efficiency Values 
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 Number of Designs Constructed from 

S/N D 𝛥1 𝛥2 𝛥3 𝛥4 𝛥5 𝛥6 𝛥7 

1 0.65 6 0 0 0 2 0 3 
2 0.66 367 43 86 0 331 45 396 
3 0.67 3660 2212 2120 1730 4610 2491 4544 
4 0.68 5349 6971 6996 7193 4450 6719 4441 

5 0.69 26 182 206 484 15 153 24 
6 0.70 0 0 0 1 0 0 0 

 

Table 3: E-Efficiency Values 

 Number of Designs Constructed from 

S/N E 𝛥1 𝛥2 𝛥3 𝛥4 𝛥5 𝛥6 𝛥7 

1 0.20 8 0 0 0 0 0 0 

2 0.21 6 0 0 0 0 0 0 
3 0.22 46 0 0 0 0 0 0 
4 0.23 61 0 0 0 0 0 0 
5 0.24 131 0 0 0 0 0 0 
6 0.25 229 0 0 0 0 0 0 
7 0.26 338 0 0 0 0 0 0 
8 0.27 377 0 0 0 0 0 4 

9 0.28 535 2 8 0 8 0 17 
10 0.29 577 32 54 0 135 15 84 
11 0.30 661 35 181 0 490 113 273 
12 0.31 646 216 235 100 927 382 750 
13 0.32 542 451 296 210 341 398 1278 
14 0.33 689 395 398 20 701 633 674 
15 0.34 774 662 612 240 1087 871 976 
16 0.35 796 1024 880 970 1309 1156 1137 

17 0.36 725 1371 1244 1070 1341 1301 1260 
18 0.37 695 1373 1341 1391 1117 1315 1196 
19 0.38 600 1217 1288 2081 887 1155 839 
20 0.39 451 990 1162 1031 499 907 460 
21 0.40 308 725 758 739 276 524 266 
22 0.41 124 443 497 570 162 286 114 
23 0.42 70 269 223 499 74 186 46 

24 0.43 14 131 131 363 41 107 23 
25 0.44 5 45 58 73 7 47 7 
26 0.45 0 13 25 50 6 11 4 
27 0.46 0 14 12 0 0 0 0 
28 0.47 0 0 3 0 0 0 0 
29 0.48 0 0 1 0 0 1 0 
30 0.49 0 0 1 0 0 0 0 
31 0.60 0 0 0 1 0 0 0 

 

The classification based on the values of E in Table 3 indicates that only the (6 × 6) 3⁄  semi-

Latin squares from 𝛥1 have efficiency values ranging from 𝑚𝑖𝑛(𝐸) to 0.44. The only semi-

Latin square with 𝑚𝑎𝑥(𝐸) is the design in Figure 10 which is constructed from 𝛥4. The only 

(6 × 6) 3⁄  semi-Latin square with 𝑚𝑎𝑥(𝑀𝑉) was constructed from 𝛥4 while those of 

𝑚𝑖𝑛(𝑀𝑉) were constructed from 𝛥7, followed by 𝛥1. In general, the best of the (6 × 6) 3⁄  

semi-Latin square, obtained in this study, was constructed from 𝛥4 while the worst of the 
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semi-Latin squares were constructed from 𝛥1 and 𝛥7. The poor performance of 𝛥1, the Howell 

design, was also pointed out by Bailey and Royle (1997) which explains its absence from their 

league table of best three efficient designs with respect to each of the four statistical efficiency 

measure. 

 

The efficient semi-Latin square of Figure 10 with canonical efficiency factors, 0.5980 with 

multiplicity three, 0.6667 with multiplicity ten, 0.8464 with multiplicity three and 1.0 with 

multiplicity one, is a simple orthogonal multi-array (SOMA) of order six; specifically denoted 

as SOMA(3, 6). Figure 10 displayed the property that no two distinct symbols appeared more 

than once together. As stated earlier and according to Bailey and Royle (1997), a semi-Latin 

square which maximizes any of the statistical efficiency measures among semi-Latin squares 

of that size is said to be optimal with respect to the efficiency criteria (Soicher, 2013). For 

instance, a semi-Latin square which maximizes A is said to be A-optimal. The (6 × 6) 3⁄  

semi-Latin square presented in Figure 10 maximized A, D, E and MV among the 65856 semi-

Latin squares of side six and blocks of size three and is therefore, A-optimal, D-optimal, E-

optimal and MV-optimal. 

 

Table 4: MV-Efficiency Values 

 Number of Designs Constructed from 

S/N MV 𝛥1 𝛥2 𝛥3 𝛥4 𝛥5 𝛥6 𝛥7 

1 0.48 0 0 0 0 0 0 4 
2 0.49 14 0 0 0 0 0 0 
3 0.50 114 0 0 0 0 0 37 
4 0.51 226 8 0 2 0 0 214 
5 0.52 325 37 0 12 58 2 134 
6 0.53 268 29 0 34 158 11 45 

7 0.54 340 65 106 32 108 40 152 
8 0.55 406 210 182 172 234 154 586 
9 0.56 722 558 543 357 823 685 1243 
10 0.57 1046 1043 888 1032 1465 1307 1934 
11 0.58 1527 1595 2169 2036 1615 2499 2048 
12 0.59 1589 1991 2401 1927 2172 1982 1582 
13 0.60 1570 1601 1647 1721 1588 1137 779 
14 0.61 929 1249 953 1091 651 818 455 

15 0.62 295 772 341 700 432 540 156 
16 0.63 37 195 116 201 88 185 37 
17 0.64 0 50 46 85 15 48 2 
18 0.65 0 5 16 5 1 0 0 
19 0.66 0 0 0 1 0 0 0 

4. Conclusion 

The method of superposition was used to construct efficient (6 × 6) 3⁄  semi-Latin square by 

superimposing each reduced Latin square of degree six on each of the (6 × 6) 2⁄  semi-Latin 

squares in context. The most efficient (6 × 6) 3 ⁄ semi-Latin square identified in this study 

and given in Figure 10 has the same A, D, E and MV statistical efficiency values with the two 

efficient (6 × 6) 3 ⁄ semi-Latin squares developed by Soicher (2012b). The (6 × 6) 3⁄  semi-

Latin square in Figure 10 is also A-, D-, E- and MV-optimal and is a SOMA(3,6), a special 
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class of semi-Latin squares used in the design of experiments (Soicher, 1999). 

 

With minimum and maximum efficiency values of (0.59, 0.69) and (0.65, 0.70), respectively, 

for A and D, the A and D efficiency measures, the (6 × 6) 3⁄  semi-Latin squares have very 

low variability while the E efficiency measure varies greatly with respect to the minimum and 

maximum efficiency values, (0.20, 0.60). Bailey and Royle (1997) pointed out that A and D 

of the (6 × 6) 2⁄  semi-Latin squares have very low variability because they are the means of 

the canonical efficiency factors whose arithmetic mean is fixed while E is an extreme value. 

The low variability of A is important since A is paramount in the estimate of treatment effects 

and since A measures the inverse of the average variance of all normalized contrasts where 

minimizing the variance is required. The D efficiency, which measures the inverse of the 

volume of the confidence ellipsoid, is relevant in experiments involving tests of models and 

sub-models. Since decisions are made based on the results of such tests, the low variability of 

D is important. The high variability of E is useful only if decision needs to be made about a 

contrast which is not known in advance and if the contrast turns out to be the one with the 

highest variance. 
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