In this study, a new distribution called Exponentiated Akash distribution, which is the extension of the one-parameter Akash distribution, is derived using the exponentiation technique. Statistical properties, such as; moments, moment generating function, reliability function, hazard function, Rényi entropy and order statistics of the distribution were obtained. A discussion was made based on the maximum likelihood procedure of finding estimates of parameters of the distribution. Our numerical illustrations substantiate the applicability, flexibility and the tendency of the distribution to provide better fits to certain sets of data than competing distributions.Â
1. Bakouch, H. S., Al-Zahrani, B. M., Al-Shomrani, A. A., Marchi, V. A. and Louzada, F. (2012). An extended Lindley distribution, Journal of the Korean Statistical Society, 41(1), 75-85.Â
 Â2. Balakrishnan, N., Gupta, R. C., Kundu, D., Leiva, V. and Sanhueza, A. (2011). On some mixture models based on Birnbaum-Saunders Distributions and associated inference, Journal of Statistical Planning and Inference, 141(7), 2175 – 290.Â
Â3. Flaih, A., Elsalloukh, H., Mendi, E. and Milanova, M. (2012). The exponentiated inverted Weibull distribution. Appl. Math. Inf. Sci, 6(2), 167-171.Â
Â4. Fuller Jr, E. R., Freiman, S. W., Quinn, J. B., Quinn, G. D. and Carter, W. C. (1994). Fracture mechanics approach to the design of glass aircraft windows: a case study. Proceedings of SPIE 2286: Window and Dome Technologies and Materials IV, 419-431.Â
Â5. Gupta, R. D. and Kundu, D. (1999). Theory and methods: Generalized exponential distributions. Australian & New Zealand Journal of Statistics, 41(2), 173-188.Â
Â6. Lindley, D. V. (1958). Fiducial distributions and Bayes' theorem. Journal of the Royal Statistical Society. Series B, 20(1), 102-107.Â
Â7. Mudholkar, G. S. and Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE transactions on reliability, 42(2), 299-302.Â
Â8. Nadarajah, S. (2011). The exponentiated exponential distribution: a survey, AStA Advances in Statistical Analysis, 95(3), 219 – 251.Â
Â9. Nadarajah, S. and Kotz, S. (2006). The exponentiated-type distributions. Acta Applicandae Mathematica, 92(2), 97-111.Â
Â10. Pal, M., Ali, M. M. and Woo, J. (2006). Exponentiated Weibull distribution. Statistica, 66(2), 139-147.Â
Â11. Shanker, R. (2015). Akash Distribution and Its Applications, International Journal of Probability and Statistics, 4(3), 65-75.Â
Â12. Shanker, R. and Shukla, K. K. (2017) On Two-Parameter Akash Distribution. Biom. Biostat. Int. J. 6(5): 00178. DOI: 10.15406/bbij.2017.06.00178Â
SHARE WITH OTHERS